Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(9)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37174679

RESUMO

Bone Morphogenetic Protein 4 (BMP4) is a secreted growth factor of the Transforming Growth Factor beta (TGFß) superfamily. The goal of this study was to test whether BMP4 contributes to the pathogenesis of diabetic retinopathy (DR). Immunofluorescence of BMP4 and the vascular marker isolectin-B4 was conducted on retinal sections of diabetic and non-diabetic human and experimental mice. We used Akita mice as a model for type-1 diabetes. Proteins were extracted from the retina of postmortem human eyes and 6-month diabetic Akita mice and age-matched control. BMP4 levels were measured by Western blot (WB). Human retinal endothelial cells (HRECs) were used as an in vitro model. HRECs were treated with BMP4 (50 ng/mL) for 48 h. The levels of phospho-smad 1/5/9 and phospho-p38 were measured by WB. BMP4-treated and control HRECs were also immunostained with anti-Zo-1. We also used electric cell-substrate impedance sensing (ECIS) to calculate the transcellular electrical resistance (TER) under BMP4 treatment in the presence and absence of noggin (200 ng/mL), LDN193189 (200 nM), LDN212854 (200 nM) or inhibitors of vascular endothelial growth factor receptor 2 (VEGFR2; SU5416, 10 µM), p38 (SB202190, 10 µM), ERK (U0126, 10 µM) and ER stress (Phenylbutyric acid or PBA, 30 µmol/L). The impact of BMP4 on matrix metalloproteinases (MMP2 and MMP9) was also evaluated using specific ELISA kits. Immunofluorescence of human and mouse eyes showed increased BMP4 immunoreactivity, mainly localized in the retinal vessels of diabetic humans and mice compared to the control. Western blots of retinal proteins showed a significant increase in BMP4 expression in diabetic humans and mice compared to the control groups (p < 0.05). HRECs treated with BMP4 showed a marked increase in phospho-smad 1/5/9 (p = 0.039) and phospho-p38 (p = 0.013). Immunofluorescence of Zo-1 showed that BMP4-treated cells exhibited significant barrier disruption. ECIS also showed a marked decrease in TER of HRECs by BMP4 treatment compared to vehicle-treated HRECs (p < 0.001). Noggin, LDN193189, LDN212854, and inhibitors of p38 and VEGFR2 significantly mitigated the effects of BMP4 on the TER of HRECs. Our finding provides important insights regarding the role of BMP4 as a potential player in retinal endothelial cell dysfunction in diabetic retinopathy and could be a novel target to preserve the blood-retinal barrier during diabetes.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Camundongos , Humanos , Animais , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Proteína Morfogenética Óssea 4/metabolismo , Retina/metabolismo , Diabetes Mellitus/metabolismo
2.
Bone Rep ; 12: 100270, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32395570

RESUMO

Mechanisms leading to age-related reductions in bone formation and subsequent osteoporosis are still incompletely understood. We recently demonstrated that kynurenine (KYN), a tryptophan metabolite, accumulates in serum of aged mice and induces bone loss. Here, we report on novel mechanisms underlying KYN's detrimental effect on bone aging. We show that KYN is increased with aging in murine bone marrow mesenchymal stem cells (BMSCs). KYN reduces bone formation via modulating levels of CXCL12 and its receptors as well as histone deacetylase 3 (Hdac3). BMSCs responded to KYN by significantly decreasing mRNA expression levels of CXCL12 and its cognate receptors, CXCR4 and ACKR3, as well as downregulating osteogenic gene RUNX2 expression, resulting in a significant inhibition in BMSCs osteogenic differentiation. KYN's effects on these targets occur by increasing regulatory miRNAs that target osteogenesis, specifically miR29b-1-5p. Thus, KYN significantly upregulated the anti-osteogenic miRNA miR29b-1-5p in BMSCs, mimicking the up-regulation of miR-29b-1-5p in human and murine BMSCs with age. Direct inhibition of miR29b-1-5p by antagomirs rescued CXCL12 protein levels downregulated by KYN, while a miR29b-1-5p mimic further decreased CXCL12 levels. KYN also significantly downregulated mRNA levels of Hdac3, a target of miR-29b-1-5p, as well as its cofactor NCoR1. KYN is a ligand for the aryl hydrocarbon receptor (AhR). We hypothesized that AhR mediates KYN's effects in BMSCs. Indeed, AhR inhibitors (CH-223191 and 3',4'-dimethoxyflavone [DMF]) partially rescued secreted CXCL12 protein levels in BMSCs treated with KYN. Importantly, we found that treatment with CXCL12, or transfection with an miR29b-1-5p antagomir, downregulated the AhR mRNA level, while transfection with miR29b-1-5p mimic significantly upregulated its level. Further, CXCL12 treatment downregulated IDO, an enzyme responsible for generating KYN. Our findings reveal novel molecular pathways involved in KYN's age-associated effects in the bone microenvironment that may be useful translational targets for treating osteoporosis.

3.
Stem Cells Int ; 2019: 3826054, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31089328

RESUMO

The aim of this study is to review all the published clinical trials on autologous bone marrow mesenchymal stem cells (BM-MSCs) in the repair of cartilage lesions of the knee. We performed a comprehensive search in three electronic databases: PubMed, Medline via Ovid, and Web of Science. A systematic review was conducted according to the guidelines of PRISMA protocol and the Cochrane Handbook for Systematic Reviews of Interventions. The modified Coleman methodology score was used to assess the quality of the included studies. Meta-analysis was conducted to estimate the effect size for Pain and function change after receiving BM-MSCs. Thirty-three studies-including 724 patients of mean age 44.2 years-were eligible. 50.7% of the included patients received cultured BM-MSCs for knee cartilage repair. There was improvement in the MINORS quality score over time with a positive correlation with the publication year. Meta-analysis indicated better improvement and statistical significance in the Visual Analog Scale for Pain, IKDC Function, Tegner Activity Scale, and Lysholm Knee Score after administration of noncultured BM-MSCs when compared to evaluation before the treatment. Meanwhile, there was a clear methodological defect in most studies with an average modified Coleman methodology score (MCMS) of 55. BM-MSCs revealed a clinically relevant improvement in pain, function, and histological regeneration.

4.
Pharmacol Ther ; 198: 90-108, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30759373

RESUMO

Dipeptidyl peptidase 4 (DPP4) is an exopeptidase found either on cell surfaces where it is highly regulated in terms of its expression and surface availability (CD26) or in a free/circulating soluble constitutively available and intrinsically active form. It is responsible for proteolytic cleavage of many peptide substrates. In this review we discuss the idea that DPP4-cleaved peptides are not necessarily inactivated, but rather can possess either a modified receptor selectivity, modified bioactivity, new antagonistic activity, or even a novel activity relative to the intact parent ligand. We examine in detail five different major DPP4 substrates: glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), peptide tyrosine-tyrosine (PYY), and neuropeptide Y (NPY), and stromal derived factor 1 (SDF-1 aka CXCL12). We note that discussion of the cleaved forms of these five peptides are underrepresented in the research literature, and are both poorly investigated and poorly understood, representing a serious research literature gap. We believe they are understudied and misinterpreted as inactive due to several factors. This includes lack of accurate and specific quantification methods, sample collection techniques that are inherently inaccurate and inappropriate, and a general perception that DPP4 cleavage inactivates its ligand substrates. Increasing evidence points towards many DPP4-cleaved ligands having their own bioactivity. For example, GLP-1 can work through a different receptor than GLP-1R, DPP4-cleaved GIP can function as a GIP receptor antagonist at high doses, and DPP4-cleaved PYY, NPY, and CXCL12 can have different receptor selectivity, or can bind novel, previously unrecognized receptors to their intact ligands, resulting in altered signaling and functionality. We believe that more rigorous research in this area could lead to a better understanding of DPP4's role and the biological importance of the generation of novel cryptic ligands. This will also significantly impact our understanding of the clinical effects and side effects of DPP4-inhibitors as a class of anti-diabetic drugs that potentially have an expanding clinical relevance. This will be specifically relevant in targeting DPP4 substrate ligands involved in a variety of other major clinical acute and chronic injury/disease areas including inflammation, immunology, cardiology, stroke, musculoskeletal disease and injury, as well as cancer biology and tissue maintenance in aging.


Assuntos
Citocinas/metabolismo , Dipeptidil Peptidase 4/metabolismo , Hormônios Peptídicos/metabolismo , Animais , Humanos , Ligantes , Proteólise
5.
Diabetologia ; 61(5): 1220-1232, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29468369

RESUMO

AIMS/HYPOTHESIS: Our earlier studies have established the role of 12/15-lipoxygenase (LO) in mediating the inflammatory reaction in diabetic retinopathy. However, the exact mechanism is still unclear. The goal of the current study was to identify the potential role of endoplasmic reticulum (ER) stress as a major cellular stress response in the 12/15-LO-induced retinal changes in diabetic retinopathy. METHODS: We used in vivo and in vitro approaches. For in vivo studies, experimental diabetes was induced in wild-type (WT) mice and 12/15-Lo (also known as Alox15) knockout mice (12/15-Lo-/-); ER stress was then evaluated after 12-14 weeks of diabetes. We also tested the effect of intravitreal injection of 12-hydroxyeicosatetraenoic acid (HETE) on retinal ER stress in WT mice and in mice lacking the catalytic subunit of NADPH oxidase, encoded by Nox2 (also known as Cybb) (Nox2-/- mice). In vitro studies were performed using human retinal endothelial cells (HRECs) treated with 15-HETE (0.1 µmol/l) or vehicle, with or without ER stress or NADPH oxidase inhibitors. This was followed by evaluation of ER stress response, NADPH oxidase expression/activity and the levels of phosphorylated vascular endothelial growth factor receptor-2 (p-VEGFR2) by western blotting and immunoprecipitation assays. Moreover, real-time imaging of intracellular calcium (Ca2+) release in HRECs treated with or without 15-HETE was performed using confocal microscopy. RESULTS: Deletion of 12/15-Lo significantly attenuated diabetes-induced ER stress in mouse retina. In vitro, 15-HETE upregulated ER stress markers such as phosphorylated RNA-dependent protein kinase-like ER-regulated kinase (p-PERK), activating transcription factor 6 (ATF6) and protein disulfide isomerase (PDI) in HRECs. Inhibition of ER stress reduced 15-HETE-induced-leucocyte adhesion, VEGFR2 phosphorylation and NADPH oxidase expression/activity. However, inhibition of NADPH oxidase or deletion of Nox2 had no effect on ER stress induced by the 12/15-LO-derived metabolites both in vitro and in vivo. We also found that 15-HETE increases the intracellular calcium in HRECs. CONCLUSIONS/INTERPRETATION: ER stress contributes to 12/15-LO-induced retinal inflammation in diabetic retinopathy via activation of NADPH oxidase and VEGFR2. Perturbation of calcium homeostasis in the retina might also play a role in linking 12/15-LO to retinal ER stress and subsequent microvascular dysfunction in diabetic retinopathy.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Retinopatia Diabética/metabolismo , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Vasos Retinianos/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/química , Animais , Apoptose , Cálcio/metabolismo , Domínio Catalítico , Linhagem Celular , Células Endoteliais/metabolismo , Humanos , Inflamação , Leucócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , NADPH Oxidases/metabolismo , Fosforilação , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(6): 636-645, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28351645

RESUMO

AIMS: Our previous studies have established a role for 12/15-lipoxygenase (LO) in mediating the inflammatory response in diabetic retinopathy (DR). However, the extent at which the local or systemic induction of 12/15-LO activity involved is unclear. Thus, the current study aimed to characterize the relative contribution of retinal endothelial versus monocytic/macrophagic 12/15-LO to inflammatory responses in DR. MATERIALS & METHODS: We first generated a clustered heat map for circulating bioactive lipid metabolites in the plasma of streptozotocin (STZ)-induced diabetic mice using liquid chromatography coupled with mass-spectrometry (LC-MS) to evaluate changes in circulating 12/15-LO activity. This was followed by comparing the in vitro mouse endothelium-leukocytes interaction between leukocytes isolated from 12/15-LO knockout (KO) versus those isolated from wild type (WT) mice using the myeloperoxidase (MPO) assay. Finally, we examined the effects of knocking down or inhibiting endothelial 12/15-LO on diabetes-induced endothelial cell activation and ICAM-1 expression. RESULTS: Analysis of plasma bioactive lipids' heat map revealed that the activity of circulating 12/15-LO was not altered by diabetes as evident by no significant changes in the plasma levels of major metabolites derived from 12/15-lipoxygenation of different PUFAs, including linoleic acid (13-HODE), arachidonic acid (12- and 15- HETEs), eicosapentaenoic acid (12- and 15- HEPEs), or docosahexaenoic acid (17-HDoHE). Moreover, leukocytes from 12/15-LO KO mice displayed a similar increase in adhesion to high glucose (HG)-activated endothelial cells as do leukocytes from WT mice. Furthermore, abundant proteins of 12-LO and 15-LO were detected in human retinal endothelial cells (HRECs), while it was undetected (15-LO) or hardly detectable (12-LO) in human monocyte-like U937 cells. Inhibition or knock down of endothelial 12/15-LO in HRECs blocked HG-induced expression of ICAM-1, a well-known identified important molecule for leukocyte adhesion in DR. CONCLUSION: Our data support that endothelial, rather than monocytic/macrophagic, 12/15-LO has a critical role in hyperglycemia-induced ICAM-1 expression, leukocyte adhesion, and subsequent local retinal barrier dysfunction. This may facilitate the development of more precisely targeted treatment strategies for DR.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Retinopatia Diabética/enzimologia , Células Endoteliais/enzimologia , Leucostasia/enzimologia , Macrófagos/enzimologia , Monócitos/enzimologia , Retina/enzimologia , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Adesão Celular/genética , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Células Endoteliais/patologia , Humanos , Molécula 1 de Adesão Intercelular/biossíntese , Molécula 1 de Adesão Intercelular/genética , Leucostasia/genética , Leucostasia/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Monócitos/patologia , Retina/patologia , Células U937
7.
Invest Ophthalmol Vis Sci ; 58(2): 933-943, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28170537

RESUMO

Purpose: We recently demonstrated that adenosine deaminase-2 (ADA2) contributes to diabetic retinopathy (DR) via up-regulating the production of inflammatory cytokines in macrophages. Also, microRNA (miR)-146b-3p has the ability to inhibit ADA2. The goal of this study was to investigate the potential role of ADA2 and therapeutic benefit of miR-146b-3p in retinal inflammation and endothelial barrier dysfunction during diabetes. Methods: Adenosine deaminase-2 activity was determined by colorimetric method in diabetic human vitreous. Human monocyte cell line U937 was differentiated into macrophages and then treated with amadori glycated albumin (AGA), and conditioned medium (CM) was used to assess the changes in ADA2 activity and TNF-α and IL-6 levels by ELISA. Also, macrophages were transfected with miR-146b-3p before treatment with AGA. Permeability of human retinal endothelial cells (hRECs) was assessed by electric cell-substrate impedance sensing (ECIS) after treatment with macrophage CM. Zonula occludens (ZO)-1 was examined by immuno-fluorescence in hRECs. Leukocyte adhesion was assessed in hRECs by measuring myeloperoxidase (MPO) activity and intercellular adhesion molecule-1 (ICAM-1) expression. Results: Adenosine deaminase-2 activity was significantly increased in diabetic human vitreous. ADA2 activity and TNF-α and IL-6 levels were significantly increased in human macrophages by AGA treatment. Amadori glycated albumin-treated macrophage CM significantly increased hREC permeability, disrupted ZO-1 pattern, and increased leukocyte adhesion to hRECs through up-regulating ICAM-1. All these changes were reversed by miR-146b-3p. Conclusions: Adenosine deaminase-2 is implicated in breakdown of the blood-retinal barrier (BRB) in DR through macrophages-derived cytokines. Therefore, inhibition of ADA2 by miR-146b-3p might be a useful tool to preserve BRB function in DR.


Assuntos
Adenosina Desaminase/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Retinopatia Diabética/tratamento farmacológico , Células Endoteliais/metabolismo , MicroRNAs/farmacologia , Retina/metabolismo , Vasos Retinianos/metabolismo , Adenosina Desaminase/efeitos dos fármacos , Western Blotting , Linhagem Celular , Citocinas/metabolismo , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Células Endoteliais/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Produtos Finais de Glicação Avançada , Humanos , Retina/patologia , Vasos Retinianos/efeitos dos fármacos , Albumina Sérica/farmacologia , Junções Íntimas/metabolismo , Albumina Sérica Glicada
8.
Oncotarget ; 7(8): 8532-45, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26885895

RESUMO

The disruption of retinal pigment epithelial (RPE) function and the degeneration of photoreceptors are cardinal features of age related macular degeneration (AMD); however there are still gaps in our understanding of underlying biological processes. Excess homocysteine (Hcy) has been reported to be elevated in plasma of patients with AMD. This study aimed to evaluate the direct effect of hyperhomocysteinemia (HHcy) on structure and function of RPE. Initial studies in a mouse model of HHcy, in which cystathionine-ß-synthase (cbs) was deficient, revealed abnormal RPE cell morphology with features similar to that of AMD upon optical coherence tomography (OCT), fluorescein angiography (FA), histological, and electron microscopic examinations. These features include atrophy, vacuolization, hypopigmentation, thickened basal laminar membrane, hyporeflective lucency, choroidal neovascularization (CNV), and disturbed RPE-photoreceptor relationship. Furthermore, intravitreal injection of Hcy per se in normal wild type (WT) mice resulted in diffuse hyper-fluorescence, albumin leakage, and CNV in the area of RPE. In vitro experiments on ARPE-19 showed that Hcy dose-dependently reduced tight junction protein expression, increased FITC dextran leakage, decreased transcellular electrical resistance, and impaired phagocytic activity. Collectively, our results demonstrated unreported effects of excess Hcy levels on RPE structure and function that lead to the development of AMD-like features.


Assuntos
Neovascularização de Coroide/patologia , Cistationina beta-Sintase/fisiologia , Hiper-Homocisteinemia/fisiopatologia , Degeneração Macular/patologia , Epitélio Pigmentado da Retina/patologia , Animais , Western Blotting , Células Cultivadas , Neovascularização de Coroide/metabolismo , Feminino , Angiofluoresceinografia , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Degeneração Macular/metabolismo , Masculino , Camundongos , Camundongos Knockout , Epitélio Pigmentado da Retina/metabolismo , Tomografia de Coerência Óptica
9.
Biochim Biophys Acta ; 1851(3): 290-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25562624

RESUMO

We recently demonstrated that 12/15-lipoxygenase (LOX) derived metabolites, hydroxyeicosatetraenoic acids (HETEs), contribute to diabetic retinopathy (DR) via NADPH oxidase (NOX) and disruption of the balance in retinal levels of the vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF). Here, we test whether PEDF ameliorates retinal vascular injury induced by HETEs and the underlying mechanisms. Furthermore, we pursue the causal relationship between LOX-NOX system and regulation of PEDF expression during DR. For these purposes, we used an experimental eye model in which normal mice were injected intravitreally with 12-HETE with/without PEDF. Thereafter, fluorescein angiography (FA) was used to evaluate the vascular leakage, followed by optical coherence tomography (OCT) to assess the presence of angiogenesis. FA and OCT reported an increased vascular leakage and pre-retinal neovascularization, respectively, in response to 12-HETE that were not observed in the PEDF-treated group. Moreover, PEDF significantly attenuated the increased levels of vascular cell and intercellular adhesion molecules, VCAM-1 and ICAM-1, elicited by 12-HETE injection. Accordingly, the direct relationship between HETEs and PEDF has been explored through in-vitro studies using Müller cells (rMCs) and human retinal endothelial cells (HRECs). The results showed that 12- and 15-HETEs triggered the secretion of TNF-α and IL-6, as well as activation of NFκB in rMCs and significantly increased permeability and reduced zonula occludens protein-1 (ZO-1) immunoreactivity in HRECs. All these effects were prevented in PEDF-treated cells. Furthermore, interest in PEDF regulation during DR has been expanded to include NOX system. Retinal PEDF was significantly restored in diabetic mice treated with NOX inhibitor, apocynin, or lacking NOX2 up to 80% of the control level. Collectively, our findings suggest that interfering with LOX-NOX signaling opens up a new direction for treating DR by restoring endogenous PEDF that carries out multilevel vascular protective functions.


Assuntos
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/antagonistas & inibidores , Retinopatia Diabética/tratamento farmacológico , Proteínas do Olho/farmacologia , Ácidos Hidroxieicosatetraenoicos/antagonistas & inibidores , Fatores de Crescimento Neural/farmacologia , Retina/efeitos dos fármacos , Neovascularização Retiniana/tratamento farmacológico , Serpinas/farmacologia , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/farmacologia , Acetofenonas/farmacologia , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Regulação da Expressão Gênica , Humanos , Ácidos Hidroxieicosatetraenoicos/farmacologia , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Injeções Intravítreas , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Retina/metabolismo , Retina/patologia , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Proteína da Zônula de Oclusão-1/genética
10.
J Lipid Res ; 56(3): 599-611, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25598081

RESUMO

Retinal hyperpermeability and subsequent macular edema is a cardinal feature of early diabetic retinopathy (DR). Here, we investigated the role of bioactive lipid metabolites, in particular 12/15-lipoxygenase (LOX)-derived metabolites, in this process. LC/MS lipidomic screen of human retinal endothelial cells (HRECs) demonstrated that 15-HETE was the only significantly increased metabolite (2.4 ± 0.4-fold, P = 0.0004) by high glucose (30 mM) treatment. In the presence of arachidonic acid, additional eicosanoids generated by 12/15-LOX, including 12- and 11-HETEs, were significantly increased. Fluorescein angiography and retinal albumin leakage showed a significant decrease in retinal hyperpermeability in streptozotocin-induced diabetic mice lacking 12/15-LOX compared with diabetic WT mice. Our previous studies demonstrated the potential role of NADPH oxidase in mediating the permeability effect of 12- and 15-HETEs, therefore we tested the impact of intraocular injection of 12-HETE in mice lacking the catalytic subunit of NADPH oxidase (NOX2). The permeability effect of 12-HETE was significantly reduced in NOX2(-/-) mice compared with the WT mice. In vitro experiments also showed that 15-HETE induced HREC migration and tube formation in a NOX-dependent manner. Taken together our data suggest that 12/15-LOX is implicated in DR via a NOX-dependent mechanism.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Retinopatia Diabética/tratamento farmacológico , Ácidos Hidroxieicosatetraenoicos/farmacologia , Hiperglicemia/tratamento farmacológico , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Retinopatia Diabética/enzimologia , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Humanos , Hiperglicemia/enzimologia , Hiperglicemia/genética , Hiperglicemia/patologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/genética
11.
J Orthop Res ; 33(2): 174-84, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25351363

RESUMO

Bone has the potential for spontaneous healing. However, this process often fails in patients with co-morbidities requiring clinical intervention. Numerous studies have revealed that bone marrow-derived mesenchymal stem/stromal cells (BMSCs) hold great potential for regenerative therapies. Common problems include poor cell engraftment, which can be addressed by irradiation prior to transplantation. Increasing evidence suggests that stromal cell-derived factor-1 (SDF-1) is involved in bone formation. However, osteogenic contributions of the beta splice variant of SDF-1 (SDF-1ß), which is highly expressed in bone, remain unclear. Using the tetracycline (Tet)-regulatory system we have shown that SDF-1ß enhances BMSC osteogenic differentiation in vitro. Here we test the hypothesis that SDF-1ß augments bone formation in vivo in a model of local BMSC transplantation following irradiation. We found that SDF-1ß, expressed at high levels in Tet-Off-SDF-1ß BMSCs, augments the cell-mediated therapeutic effects resulting in enhanced bone formation, as evidenced by ex vivo µCT and bone histomorphometry. The data demonstrate the specific contribution of SDF-1ß to BMSC-mediated bone formation, and validate the feasibility of the Tet-Off technology to regulate SDF-1ß expression in vivo. In conclusion, SDF-1ß provides potent synergistic effects supporting BMSC-mediated bone formation and appears a suitable candidate for optimization of bone augmentation in translational protocols.


Assuntos
Quimiocina CXCL12/metabolismo , Consolidação da Fratura , Terapia Genética , Transplante de Células-Tronco Mesenquimais , Osteogênese , Animais , Transplante Ósseo , Masculino , Camundongos Endogâmicos C57BL , Tíbia/citologia , Tíbia/transplante
12.
Exp Eye Res ; 125: 79-88, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24910902

RESUMO

Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus. Vision loss in DR principally occurs due to breakdown of the blood-retinal barrier (BRB), leading to macular edema, retinal detachment and inner retinal and vitreous hemorrhage. Several growth factors have been shown to play crucial role in the development of these vascular changes; however, the cellular and molecular mechanisms of DR are not yet fully revealed. In the current study we investigated the role of bone morphogenetic protein-2 (BMP2) in DR. We examined the changes in the protein levels of BMP2 in human vitreous and retina in addition to the mouse retina of streptozotocin-induced diabetes. To detect the source of BMP2 during diabetes, human retinal endothelial cells (hRECs) were subjected to high glucose (HG) for 5 days and levels of BMP2 protein were analyzed in conditioned media of these cells relative to control. We also evaluated the effect of BMP2 on the levels of VEGF in cultured rat Müller cells (rMC1). In addition, we tested the pro-inflammatory effects of BMP2 by examining its effect on leukocyte adhesion to cultured hRECs, and levels of adhesion molecules and cytokines production. Finally, the effect of different concentrations of BMP2 on permeability of confluent monolayer of hRECs was evaluated using FITC-Dextran flux permeability assay and by measuring Transcellular Electrical Resistance (TER) using Electric Cell-substrate Impedance Sensing (ECIS). Our results show, for the first time, the up-regulation of BMP2 in diabetic human and mouse retinas in addition to its detection in vitreous of patients with proliferative DR (72 ± 7 pg/ml). In vitro, hRECs showed upregulation of BMP2 in HG conditions suggesting that these cells are a potential source of BMP2 in diabetic conditions. Furthermore, BMP2 induced VEGF secretion by Müller cells in-vitro; and showed a dose response in increasing permeability of cultured hRECs. Meanwhile, BMP2 pro-inflammatory effects were recognized by its ability to induce leukocyte adhesion to the hRECs, intercellular adhesion molecule-1 (ICAM-1) and upregulation of interleukin-6 and 8 (IL-6 and IL-8). These results show that BMP2 could be a contributing growth factor to the development of microvascular dysfunction during DR via enhancing both pro-angiogenic and inflammatory pathways. Our findings suggest BMP2 as a potential therapeutic target to prevent/treat DR.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Células Ependimogliais/metabolismo , Análise de Variância , Animais , Proteína Morfogenética Óssea 2/fisiologia , Adesão Celular/fisiologia , Células Cultivadas , Citocinas/metabolismo , Diabetes Mellitus Experimental/etiologia , Impedância Elétrica , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Ependimogliais/efeitos dos fármacos , Humanos , Camundongos , Ratos , Retina/citologia , Retina/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Corpo Vítreo/metabolismo , Receptor do Retrovírus Politrópico e Xenotrópico
13.
Tissue Eng Part A ; 20(23-24): 3212-27, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24914464

RESUMO

Skeletal injury is a major clinical challenge accentuated by the decrease of bone marrow-derived mesenchymal stem/stromal cells (BMSCs) with age or disease. Numerous experimental and clinical studies have revealed that BMSCs hold great promise for regenerative therapies due to their direct osteogenic potential and indirect trophic/paracrine actions. Increasing evidence suggests that stromal cell-derived factor-1 (SDF-1) is involved in modulating the host response to the injury. Common problems with BMSC therapy include poor cell engraftment, which can be addressed by total body irradiation (TBI) prior to transplantation. In this study, we tested the hypothesis that direct tibial transplantation of BMSCs drives endogenous bone formation in a dose-dependent manner, which is enhanced by TBI, and investigated the potential role of SDF-1 in facilitating these events. We found that TBI is permissive for transplanted BMSCs to engraft and contribute to new bone formation. Bone marrow (BM) interstitial fluid analysis revealed no differences of SDF-1 splice variants in irradiated animals compared to controls, despite the increased mRNA and protein levels expressed in whole BM cells. This correlated with increased dipeptidyl peptidase IV activity and the failure to induce chemotaxis of BMSCs in vitro. We found increased mRNA expression levels of the major SDF-1-cleaving proteases in whole BM cells from irradiated animals suggesting distinct spatial differences within the BM in which SDF-1 may play different autocrine and paracrine signaling roles beyond the immediate cell surface microenvironment.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos da radiação , Irradiação Corporal Total/efeitos adversos , Animais , Quimiocina CXCL12/metabolismo , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL
14.
Acta Biomater ; 10(7): 3327-34, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24726977

RESUMO

Tricalcium silicate cements have been successfully employed in the biomedical field as bioactive bone and dentin substitutes, with widely acclaimed osteoactive properties. This research analyzed the effects of different tricalcium silicate cement formulations on the temporal osteoactivity profile of human bone marrow-derived mesenchymal stem cells (hMW-MSCs). These cells were exposed to four commercially available tricalcium silicate cement formulations in osteogenic differentiation medium. After 1, 3, 7 and 10 days, quantitative real-time polymerase chain reaction and Western blotting were performed to detect expression of the target osteogenic markers ALP, RUNX2, OSX, OPN, MSX2 and OCN. After 3, 7, 14 and 21 days, alkaline phosphatase assay was performed to detect changes in intracellular enzyme level. An Alizarin Red S assay was performed after 28 days to detect extracellular matrix mineralization. In the presence of tricalcium silicate cements, target osteogenic markers were downregulated at the mRNA and protein levels at all time points. Intracellular alkaline phosphatase enzyme levels and extracellular mineralization of the experimental groups were not significantly different from the untreated control. Quantitative polymerase chain reaction results showed increases in downregulation of RUNX2, OSX, MSX2 and OCN with increasing time of exposure to the tricalcium silicate cements, while ALP showed peak downregulation at day 7. For Western blotting, OSX, OPN, MSX2 and OCN showed increased downregulation with increased exposure time to the tested cements. Alkaline phosphatase enzyme levels generally declined after day 7. Based on these results, it is concluded that tricalcium silicate cements do not induce osteogenic differentiation of hBM-MSCs in vitro.


Assuntos
Cimentos Ósseos , Células da Medula Óssea/citologia , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Osteogênese , Fosfatase Alcalina/metabolismo , Compostos de Cálcio , Humanos , Técnicas In Vitro , Reação em Cadeia da Polimerase em Tempo Real , Silicatos
15.
Artigo em Inglês | MEDLINE | ID: mdl-26636134

RESUMO

BACKGROUND: Secreted Protein Acidic and Rich in Cysteine (SPARC) is a matricellular protein which is implicated in regulation of angiogenesis. PURPOSE: To characterize the changes in SPARC expression and effect of its deletion in a mouse model Oxygen Induced Retinopathy (OIR). MATERIALS AND METHODS: Wild type (wt) and SPARC-deficient mice were subjected to high oxygen (75%) for 5 days (p7-p12) before room air for additional 5 days (p12-p17). Retinas from both groups were flat mounted and retinal vessels were labeled with Isolectin-B4. Areas of Retinal Neovascularization (RNV) and vaso-obliteration were measured by Image-J and normalized to total retinal areas. SPARC expression was analyzed in both groups at p14 and p17 in retinal homogenates and sections by Western Blotting (WB) and immunofluorescence respectively. Human Retinal Endothelial Cells (HRECs) were exposed to hypoxia (1% O2) for 6 hours then SPARC was measured in cell lysate and condition medium by WB and ELISA. Moreover, HRECs were treated with VEGF or SPARC to study their mutual regulatory effect. RESULTS: SPARC-deficient mice demonstrated significant increase in the vaso-obliteration (p=0.03) and modest increase in RNV compared to the wt control. Retinal levels of SPARC was significantly decreased during OIR at p14 (p=0.01) and partially restored to normal level by p17. Moreover, hypoxia significantly reduced SPARC expression and secretion in HRECs (p=0.001). We noticed a mutual positive regulatory feedback between SPARC and VEGF. CONCLUSION: SPARC deletion enhances ischemic retinopathy, thus modulation of SPARC expression could be a novel therapeutic approach to prevent pathological RNV.

16.
J Oral Maxillofac Surg ; 71(6): 1107-18, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23477871

RESUMO

PURPOSE: To compare the efficiency of recombinant human bone morphogenetic protein 2 (rhBMP2)/absorbable collagen sponge (ACS) in the delayed versus immediate reconstruction of mandibular segmental defects in a canine model. METHODS: We randomized 11 dogs into 2 groups: immediate reconstruction (group 1, n = 6) and delayed reconstruction (group 2, n = 5). A 35-mm osteoperiosteal segmental defect was created on the left side of the mandible. Reconstruction with rhBMP2/ACS was carried out in the same setting in group 1 or at 4 weeks postoperatively in group 2. The contralateral side acted as an internal control. Animals were monitored both clinically and radiographically throughout the experiment. Twelve weeks after the application of rhBMP2/ACS, the quantity of bone formation was evaluated using regenerate mapping and histomorphometric analysis. Qualitative evaluation was performed based on bone mineral density and Vickers microhardness (µHV) testing. RESULTS: Postoperative seromas were observed in 83.3% of group 1 dogs only. Group 1 showed significantly larger physical dimensions than group 2 in most regenerate zones. Successful regeneration was achieved in 83.3% of group 1 dogs (discontinuity defect was seen in 1 of 6 dogs in group 1). Meanwhile, none of the 5 dogs in group 2 could be considered to have undergone successful regeneration (3 dogs had discontinuity defects, bony union occurred only in the basal third in the fourth dog, and the last dog showed union with only a shell of bone). The percent bone area and percent defect filling were significantly higher in group 1 than in group 2 (percent bone area, 52.4% ± 5.6% in group 1 and 36.6% ± 11.2% in group 2 [P = .02]; percent defect filling, 56.3% ± 5.5% in group 1 and 38.5% ± 10.8% in group 2 [P = .01]). Group 1 showed higher bone mineral density (0.7 ± 0.3 mg/cm(3) in group 1 and 0.4 ± 0.1 mg/cm(3) in group 2, P = .1). Finally, µHV was significantly higher in group 1 (20.3 ± 2.6 µHV) than in group 2 (13.2 ± 2.4 µHV) (P = .01). CONCLUSIONS: Delaying the application of rhBMP2/ACS for 4 weeks attenuated the quantity and quality of regenerated bone in mandibular segmental defects.


Assuntos
Proteína Morfogenética Óssea 2/administração & dosagem , Regeneração Óssea/efeitos dos fármacos , Portadores de Fármacos , Regeneração Tecidual Guiada/métodos , Mandíbula/cirurgia , Animais , Densidade Óssea/efeitos dos fármacos , Colágeno , Cães , Dureza/efeitos dos fármacos , Humanos , Distribuição Aleatória , Proteínas Recombinantes/administração & dosagem , Fatores de Tempo
17.
Tissue Eng Part A ; 18(5-6): 665-75, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21981405

RESUMO

The ability of recombinant human bone morphogenetic protein 2 on absorbable collagen sponge (rhBMP2/ACS) to regenerate bone in segmental defect has been well characterized. However, clinical results of rhBMP2/ACS constructs in secondary reconstruction of large mandibular and craniofacial defects have not been consistent. We hypothesized that rhBMP2 delivery triggers an endogenous response in the soft tissues surrounding the defect, in the form of expression of BMP2 and vascular endothelial growth factor (VEGF). Such osteogenic response will occur only after immediate, as opposed to delayed, rhBMP2 delivery, suggesting a new explanation to the difference in bone regeneration between the two settings. A 35-mm segmental bone and periosteum defect was created on one side of the mandible in 16 dogs divided in three groups. Group 1 (Gp1, n=6) ACS was loaded with 8 mL of rhBMP2 (0.2 mg/mL). In Gp2 (n=5) the same dose of rhBMP2/ACS was delivered into the defect 4 weeks after surgery. In Gp3 (control; n=5) the defect was reconstructed using ACS loaded with 8 mL of buffer only (devoid of rhBMP2). Tissues were collected after 12 weeks of reconstruction in all groups. Direct measurement of physical dimensions of regenerates and bone morphometry was performed to evaluate bone regeneration. The mRNA expression of both BMP2 and VEGF in the soft tissue surrounding the defect was evaluated using real-time quantitative PCR. Both BMP2 and VEGF proteins were quantified in immunostained sections. Immunoflurescence colocalization of BMP2 and acetylated low density lipoprotein (AcLDL) was done to detect the source of BMP2. Immediate delivery yielded better bone regeneration. Both BMP2 and VEGF mRNA expression was upregulated only in Gp1 (+7.3, p=0.001; +1.53, p=0.001, respectively). BMP2 protein was significantly higher in the immediate reconstruction group; however, VEGF protein was undetected in the examined sections. Immediate delivery of rhBMP2 seemed to induce endogenous release of BMP2 from the surrounding soft tissues, an effect that was lacking in delayed delivery and may explain the variability of clinical results associated with BMP2 use. Colocalization of BMP2 and endothelial cells (ECs) suggested that ECs could be the source of endogenous BMP2.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea/efeitos dos fármacos , Anormalidades Craniofaciais/tratamento farmacológico , Fraturas Mandibulares/tratamento farmacológico , Animais , Proteína Morfogenética Óssea 2/biossíntese , Anormalidades Craniofaciais/patologia , Modelos Animais de Doenças , Cães , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipoproteínas LDL/metabolismo , Fraturas Mandibulares/patologia , Periósteo/metabolismo , Periósteo/patologia , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/biossíntese
18.
J Neurooncol ; 87(2): 123-32, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18058069

RESUMO

Medulloblastomas arise in the cerebellum and are the most common pediatric primary malignant brain tumors. Currently, medulloblastoma patients are best treated with surgical removal of the tumor, adjuvant radiation therapy and chemotherapy. The chemotherapeutic agents that showed efficiency against medulloblastomas include lomustine and vincristine. However, the effects of these drugs on medulloblastomas as well as on other cell types is still not well defined. In the present report we present evidence that the cytotoxic effect of these drugs is not specific for medulloblastoma cells but includes also normal fibroblast and epithelial cells. We have also shown that vincristine and lomustine trigger apoptosis in all these cells through the mitochondrial pathway via decrease in the level of the anti-apoptosis proteins Bcl-2 and Bcl-xl, respectively. Intriguingly, the proportion of apoptotic cells induced in medulloblastoma and normal epithelial and fibroblastic cells was similar. In addition, vincristine induced low proportion of necrosis in medulloblastoma and normal fibroblast cells. Interestingly, while vincristine induced cell cycle delay in G2/M phase in normal as well as medulloblastoma cells, lomustine effect on the cell cycle was specific for medulloblastoma cells. Furthermore, we have shown that vincristine and lomustine up-regulated p21 protein level in a p53-independent manner. These results shed more light on the biological effects of vincristine and lomustine and show that lomustine is a more specific and potent anti-medulloblastoma agent.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Cerebelares/tratamento farmacológico , Inibidor de Quinase Dependente de Ciclina p21/efeitos dos fármacos , Lomustina/farmacologia , Meduloblastoma/tratamento farmacológico , Vincristina/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Epiteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Citometria de Fluxo , Humanos , Immunoblotting , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Regulação para Cima , Proteína bcl-X/efeitos dos fármacos
19.
Clin Cancer Res ; 11(8): 3102-8, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15837766

RESUMO

PURPOSE: Phosphatidylinositol 3'-kinase (PI3'-kinase) can be activated by the K1 protein of Kaposi sarcoma-associated herpes virus (KSHV). However, the role of PI3'-kinase in KSHV-associated primary effusion lymphoma (PEL) is not known. To assess this, we studied survival and apoptosis in PEL cell lines following inhibition of PI3'-kinase. EXPERIMENTAL DESIGN: Constitutive activation of several targets of PI3-kinase and apoptotic proteins were determined by Western blot analysis using specific antibodies. We used LY294002 to block PI3'-kinase/AKT activation and assess apoptosis by flow cytometric analysis. RESULTS: Blocking PI3'-kinase induced apoptosis in PEL cells, including BC1, BC3, BCBL1, and HBL6, whereas BCP1 was refractory to LY294002-induced apoptosis. LY294002-induced apoptosis did not seem to involve Fas/Fas-L but had an additive effect to CH11-mediated apoptosis. We also show that AKT/PKB is constitutively activated in all PELs and treatment with LY294002 causes complete dephosphorylation in all cell lines except BCP1 where a residual AKT phosphorylation remained after 24 hours of treatment. FKHR and GSK3 were also constitutively phosphorylated in PELs and treatment with LY294002 caused their dephosphorylation. Although inhibition of PI3'-kinase induced cleavage of BID in all cell lines, cytochrome c was released from the mitochondria and caspase-9 and caspase-3 were activated in LY294002-induced apoptotic BC1 but not in resistant BCP1. Similarly, XIAP, a target of AKT, was down-regulated after LY294002 treatment only in sensitive PEL cells. CONCLUSIONS: Our data show that the PI3'-kinase pathway plays a major role in survival of PEL cells and suggest that this cascade may be a promising target for therapeutic intervention in primary effusion lymphomas.


Assuntos
Apoptose/efeitos dos fármacos , Cromonas/farmacologia , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Citocromos c/metabolismo , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo/métodos , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Immunoblotting , Linfoma/enzimologia , Linfoma/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Derrame Pleural Maligno/enzimologia , Derrame Pleural Maligno/patologia , Derrame Pleural Maligno/fisiopatologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fatores de Transcrição/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Receptor fas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...