Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34685244

RESUMO

In this research, direct band gap polymer composites with amorphous phase, which are imperative for optoelectronic devices applications were synthesized. The solution cast technique was used to produce polyethylene oxide (PEO)/calcium titanate (CaTiO3) nanocomposite (NC) films. The X-ray diffraction (XRD) confirms the growth of amorphous nature within PEO with CaTiO3 addition. The optical band gaps of pure PEO and PEO/CaTiO3 NC films were calculated using analysis of ultraviolet-visible (UV-Vis) spectra. The change in absorption edge toward lower photon energy is evidence of polymer modification. The dispersion behavior of the refractive index of PEO was manipulated to a higher wavelength upon doping with CaTiO3. Upon adding CaTiO3 to the pure PEO polymer, the dielectric constant and refractive index were considerably modified. The band gap shifts from 4.90 eV to 4.19 eV for the PEO incorporated with an optimum portion of 8 wt. % of CaTiO3. The types of the electronic transition in composite samples were specified, based on the Taucs model and the optical dielectric loss. The alteration of UV/Vis absorption spectra of the NC film was considered a suitable candidate to be applied in nanotechnology-based devices. The spherulites ascribed to the crystalline phase were distinguished through the optical microscopy (OM) study.

2.
Nanomaterials (Basel) ; 9(6)2019 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-31181863

RESUMO

The PEO-based polymer nanocomposites were prepared by solution cast method. Green approaches were used for synthesis of carbon nanodots (CNDs) and silver nanoparticles (Ag NPs). It was found that the crystallite size of spherulites of PEO was greatly scarified upon incorporation of CNDs and Ag NPs. In the present work, in opposition to other studies, broadening of surface plasmon resonance (SPR) peak of metallic Ag NPs in PEO-based polymer composites was observed rather than peak tuning. Various techniques, such as powder X-ray diffraction (XRD), SEM, UV-Vis spectroscopy, and photoluminescence (PL), were used to characterize the structural, morphological, and optical properties of the samples. Increase of amorphous phase for the PEO doped with CND particles was shown from the results of XRD analyses. Upon the addition of suspended Ag NPs to the PEO:CNDs composites, significant change of XRD peak position was seen. A field-emission scanning electron microscope (FESEM) was used to investigate the surface morphology of the samples. In the SEM, a significant change in the crystalline structure was seen. The size of PEO spherulites in the PEO nanocomposite samples became smaller and the percentage of amorphous portion became larger, owing to the distribution of CNDs and Ag NPs. The UV-Vis absorption spectra of the PEO-based polymer were found to improve and shift to higher wavelengths upon incorporation of CNDs and Ag NPs into the PEO matrix. The SPR peak broadening in the UV-Vis spectra was observed in the PEO:CNDs composites due to the Ag NPs. The absorption edge value of PEO was found to shift toward lower photon energy as the CNDs and Ag NPs are introduced. The photoluminescence (PL) spectra were also observed for the PEO:CNDs and PEO:CNDs:Ag samples and found to be more intense in the PEO:CNDs system than in the PEO:CNDs:Ag system. Lastly, the optical band gap of the samples was further studied in detail using of Tauc's model and optical dielectric loss parameter. The types of electron transition were specified.

3.
Polymers (Basel) ; 9(11)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30965923

RESUMO

In this work, the role of poly(vinyl alcohol) (PVA) blending on structural and electrical properties of chitosan:silver nitrate systems is studied. The X-ray diffraction (XRD) results show that the crystalline phase of chitosan (CS) is greatly scarified by silver nitrate (AgNt) salt. The crystalline domain of CS:AgNt is more broadened at 10 wt % of PVA. The spike and semicircular arcs can be separated in impedance plots. At high temperatures, the spike regions remained. The direct current (DC) conductivity was calculated from the bulk resistance obtained from the impedance plots. The dielectric constant and DC conductivity versus PVA content exhibited similar behavior. The maximum DC conductivity at ambient temperature was 1.1 × 10-6 S/cm for 10 wt % of PVA. The DC ionic conductivity increased to 9.95 × 10-5 S/cm at 80 °C. Above 10 wt % of PVA, the drop in DC conductivity and dielectric constant were observed due to the increase in viscosity. Shifting of relaxation peaks towards the lower frequency revealed the increase of resistivity of the samples. The linear increase of DC conductivity versus 1000/T indicated that ion transport followed the Arrhenius model. The incomplete semicircular arc in Argand plots indicated the non-Debye type of relaxation process. The Argand plots were used to distinguish between conductivity relaxation and viscoelastic relaxation. Three regions were distinguished in the alternating current (AC) spectra of the blend electrolyte samples. The plateau region in AC spectra was used to estimate the DC conductivity. The estimated DC conductivity from the AC spectra was close to those calculated from the impedance plots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...