Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652106

RESUMO

Endogenous tags have become invaluable tools to visualize and study native proteins in live cells. However, generating human cell lines carrying endogenous tags is difficult due to the low efficiency of homology-directed repair. Recently, an engineered split mNeonGreen protein was used to generate a large-scale endogenous tag library in HEK293 cells. Using split mNeonGreen for large-scale endogenous tagging in human iPSCs would open the door to studying protein function in healthy cells and across differentiated cell types. We engineered an iPS cell line to express the large fragment of the split mNeonGreen protein (mNG21-10) and showed that it enables fast and efficient endogenous tagging of proteins with the short fragment (mNG211). We also demonstrate that neural network-based image restoration enables live imaging studies of highly dynamic cellular processes such as cytokinesis in iPSCs. This work represents the first step towards a genome-wide endogenous tag library in human stem cells.


The human body contains around 20,000 different proteins that perform a myriad of essential roles. To understand how these proteins work in healthy individuals and during disease, we need to know their precise locations inside cells and how these locations may change in different situations. Genetic tools known as fluorescent proteins are often used as tags to study the location of specific proteins of interest within cells. When exposed to light, the fluorescent proteins emit specific colours of light that can be observed using microscopes. In a fluorescent protein system known as split mNeonGreen, researchers insert the DNA encoding two fragments of a fluorescent protein (one large, one small) separately into cells. The large fragment can be found throughout the cell, while the small fragment is attached to specific host proteins. When the two fragments meet, they assemble into the full mNeonGreen protein and can fluoresce. Researchers can use split mNeonGreen and other similar systems to generate large libraries of cells where the small fragment of a fluorescent protein is attached to thousands of different host proteins. However, so far these libraries are restricted to a handful of different types of cells. To address this challenge, Husser et al. inserted the DNA encoding the large fragment of mNeonGreen into human cells known as induced pluripotent stem cells, which are able to give rise to any other type of human cell. This then enabled the team to quickly and efficiently generate a library of stem cells that express the small fragment of mNeonGreen attached to different host proteins. Further experiments studied the locations of host proteins in the stem cells just before they divided into two cells. This suggested that there are differences between how induced pluripotent stem cells and other types of cells divide. In the future, the cells and the method developed by Husser et al. may be used by other researchers to create atlases showing where human proteins are located in many other types of cells.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células HEK293 , Linhagem Celular
2.
Open Biol ; 12(11): 220247, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36416720

RESUMO

Cytokinesis is required to physically separate the daughter cells at the end of mitosis. This crucial process requires the assembly and ingression of an actomyosin ring, which must occur with high fidelity to avoid aneuploidy and cell fate changes. Most of our knowledge of mammalian cytokinesis was generated using over-expressed transgenes in HeLa cells. Over-expression can introduce artefacts, while HeLa are cancerous human cells that have lost their epithelial identity, and the mechanisms controlling cytokinesis in these cells could be vastly different from other cell types. Here, we tagged endogenous anillin, Ect2 and RhoA with mNeonGreen and characterized their localization during cytokinesis for the first time in live human cells. Comparing anillin localization in multiple cell types revealed cytokinetic diversity with differences in the duration and symmetry of ring closure, and the timing of cortical recruitment. Our findings show that the breadth of anillin correlates with the rate of ring closure, and support models where cell size or ploidy affects the cortical organization, and intrinsic mechanisms control the symmetry of ring closure. This work highlights the need to study cytokinesis in more diverse cell types, which will be facilitated by the reagents generated for this study.


Assuntos
Actomiosina , Proteínas Contráteis , Citocinese , Proteínas Proto-Oncogênicas , Proteína rhoA de Ligação ao GTP , Humanos , Actomiosina/metabolismo , Proteínas Contráteis/genética , Proteínas Contráteis/metabolismo , Células HeLa , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
3.
Sci Rep ; 11(1): 23665, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880347

RESUMO

We reveal the effects of a new microtubule-destabilizing compound in human cells. C75 has a core thienoisoquinoline scaffold with several functional groups amenable to modification. Previously we found that sub micromolar concentrations of C75 caused cytotoxicity. We also found that C75 inhibited microtubule polymerization and competed with colchicine for tubulin-binding in vitro. However, here we found that the two compounds synergized suggesting differences in their mechanism of action. Indeed, live imaging revealed that C75 causes different spindle phenotypes compared to colchicine. Spindles remained bipolar and collapsed after colchicine treatment, while C75 caused bipolar spindles to become multipolar. Importantly, microtubules rapidly disappeared after C75-treatment, but then grew back unevenly and from multiple poles. The C75 spindle phenotype is reminiscent of phenotypes caused by depletion of ch-TOG, a microtubule polymerase, suggesting that C75 blocks microtubule polymerization in metaphase cells. C75 also caused an increase in the number of spindle poles in paclitaxel-treated cells, and combining low amounts of C75 and paclitaxel caused greater regression of multicellular tumour spheroids compared to each compound on their own. These findings warrant further exploration of C75's anti-cancer potential.


Assuntos
Isoquinolinas/farmacologia , Microtúbulos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Fuso Acromático/efeitos dos fármacos , Polos do Fuso/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Colchicina/farmacologia , Humanos , Isoquinolinas/química , Microtúbulos/metabolismo , Tiofenos/química
4.
J Cell Sci ; 134(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33912919

RESUMO

Cytokinesis is the process that separates a cell into two daughter cells at the end of mitosis. Most of our knowledge of cytokinesis comes from overexpression studies, which affects our interpretation of protein function. Gene editing can circumvent this issue by introducing functional mutations or fluorescent probes directly into a gene locus. However, despite its potential, gene editing is just starting to be used in the field of cytokinesis. Here, we discuss the benefits of using gene editing tools for the study of cytokinesis and highlight recent studies that successfully used CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) technology to answer critical questions regarding the function of cytokinesis proteins. We also present methodologies for editing essential genes and discuss how CRISPR interference (CRISPRi) and activation (CRISPRa) can enable precise control of gene expression to answer important questions in the field. Finally, we address the need for gene editing to study cytokinesis in more physiologically relevant contexts. Therefore, this Review provides a roadmap for gene editing to be used in the study of cytokinesis and other cellular processes.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Citocinese/genética , Edição de Genes , Fenótipo
5.
Anal Chem ; 91(8): 5159-5168, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30945840

RESUMO

Digital microfluidics (DMF) represents an alternative to the conventional microfluidic paradigm of transporting fluids in enclosed channels. One of the major benefits of DMF is that fluid motion and control is achieved without external pumps. The automation component of DMF have pushed the barriers of this "lab-on-chip" technology. However, integration with external components (i.e., "world-to-chip") interfaces have been a challenge. Two common "world-to-chip" challenges are (1) delivering biological samples to DMF devices and (2) accurately controlling temperatures on device. To address these challenges, this work describes two "world-to-chip" interface features that have been integrated on a DMF platform: a reagent delivery system and a thermal control apparatus. This platform enables a variety of biological or chemical experiments to be conducted on-chip while reducing manual intervention. Specifically, our platform increases reagent volumes available to device reservoirs volume by at least 50-fold eliminating the need to manually refill reservoirs while improving droplet dispensing reproducibility. In addition, we have integrated a closed-loop temperature control system that offers precise temperature control on-chip. To validate our "world-to-chip" interface, we have automated bacterial transformation and enzymatic assay protocols, showing that such a system enhances DMF performance. Overall, we propose that this system will improve biological experimentation which requires fluidic and temperature control integrated on DMF platforms.


Assuntos
Celulase/análise , Ensaios Enzimáticos , Escherichia coli/genética , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Celulase/metabolismo , Estrutura Molecular , Tamanho da Partícula , Impressão Tridimensional , Propriedades de Superfície
6.
ACS Synth Biol ; 7(3): 933-944, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29516725

RESUMO

The expression of a recombinant gene in a host organism through induction can be an extensively manual and labor-intensive procedure. Several methods have been developed to simplify the protocol, but none has fully replaced the traditional IPTG-based induction. To simplify this process, we describe the development of an autoinduction platform based on digital microfluidics. This system consists of a 600 nm LED and a light sensor to enable the real-time monitoring of  the optical density (OD) samples coordinated with the semicontinuous mixing of a bacterial culture. A hand-held device was designed as a microbioreactor to culture cells and to measure the OD of the bacterial culture. In addition, it serves as a platform for the analysis of regulated protein expression in E. coli without the requirement of standardized well-plates or pipetting-based platforms. Here, we report for the first time, a system that offers great convenience without the user to physically monitor the culture or to manually add inducer at specific times. We characterized our system by looking at several parameters (electrode designs, gap height, and growth rates) required for an autoinducible system. As a first step, we carried out an automated induction optimization assay using a RFP reporter gene to identify conditions suitable for our system. Next, we used our system to identify active thermophilic ß-glucosidase enzymes that may be suitable candidates for biomass hydrolysis. Overall, we believe that this platform may be useful for synthetic biology applications that require regulating and analyzing expression of heterologous genes for strain optimization.


Assuntos
Microfluídica/métodos , Biologia Sintética/métodos , Automação , Custos e Análise de Custo , Eletrodos , Expressão Gênica , Microfluídica/economia , Biologia Sintética/economia , Fatores de Tempo , beta-Glucosidase/metabolismo
7.
Lab Chip ; 17(20): 3437-3446, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28871290

RESUMO

Digital microfluidics (DMF) is a technology that provides a means of manipulating nL-µL volumes of liquids on an array of electrodes. By applying an electric potential to an electrode, these discrete droplets can be controlled in parallel which can be transported, mixed, reacted, and analyzed. Typically, an automation system is interfaced with a DMF device that uses a standard set of basic instructions written by the user to execute droplet operations. Here, we present the first feedback method for DMF that relies on imaging techniques that will allow online detection of droplets without the need to reactivate all destination electrodes. Our system consists of integrating open-source electronics with a CMOS camera and a zoom lens for acquisition of the images that will be used to detect droplets on the device. We also created an algorithm that uses a Hough transform to detect a variety of droplet sizes and to detect singular droplet dispensing and movement failures on the device. As a first test, we applied this feedback system to test droplet movement for a variety of liquids used in cell-based assays and to optimize different feedback actuation schemes to improve droplet movement fidelity. We also applied our system to a colorimetric enzymatic assay to show that our system is capable of biological analysis. Overall, we believe that using our approach of integrating imaging and feedback for DMF can provide a platform for automating biological assays with analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...