Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257038

RESUMO

The development of convective technologies for antibody purification is of interest to the bioprocessing industries. This study developed a Protein A membrane using a combination of graft polymerization and copper(I)-catalyzed alkyne-azide click chemistry. Regenerated cellulose supports were functionalized via surface-initiated copolymerization of propargyl methacrylate (PgMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMEMA300), followed by a reaction with azide-functionalized Protein A ligand. The polymer-modified membranes were characterized using attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), gravimetric analysis, and permeability measurements. Copolymer composition was determined using the Mayo-Lewis equation. Membranes clicked with azide-conjugated Protein A were evaluated by measuring static and dynamic binding (DBC10) capacities for human immunoglobulin G (hIgG). Copolymer composition and degree of grafting were found to affect maximum static binding capacities, with values ranging from 5 to 16 mg/mL. DBC10 values did not vary with flow rate, as expected of membrane adsorbers.

2.
Membranes (Basel) ; 13(10)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37887996

RESUMO

Protein A chromatography is the preferred unit operation for purifying Fc-based proteins. Convective chromatography technologies, like membrane adsorbers, can perform the purification rapidly and improve throughput dramatically. While the literature reports the preparation of Protein A membrane adsorbers utilizing traditional coupling chemistries that target lysine or thiol groups on the Protein A ligand, this study demonstrates a new approach utilizing copper-free dibenzocyclooctyne (DBCO)-azide click chemistry. The synthetic pathway consists of three main steps: bioconjugation of Protein A with a DBCO-polyethylene glycol (PEG) linker, preparation of an azide-functionalized membrane surface, and click reaction of DBCO-Protein A onto the membrane surface. Using polyclonal human immunoglobulins (hIgG) as the target molecule, Protein A membranes prepared by this synthetic pathway showed a flowrate-independent dynamic binding capacity of ~10 mg/mL membrane at 10% breakthrough. Fitting of static binding capacity measurements to the Langmuir adsorption isotherm showed a maximum binding (qmax) of 27.48 ± 1.31 mg/mL and an apparent equilibrium dissociation constant (Kd) of value of 1.72 × 10-1 ± 4.03 × 10-2 mg/mL. This work represents a new application for copper-less click chemistry in the membrane chromatography space and outlines a synthetic pathway that can be followed for immobilization of other ligands.

3.
Membranes (Basel) ; 13(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37233572

RESUMO

Protein A chromatography is ubiquitous to antibody purification. The high specificity of Protein A for binding the Fc-region of antibodies and related products enables unmatched clearance of process impurities like host cell proteins, DNA, and virus particles. A recent development is the commercialization of research-scale Protein A membrane chromatography products that can perform capture step purification with short residence times (RT) on the order of seconds. This study investigates process-relevant performance and physical properties of four Protein A membranes: Purilogics Purexa™ PrA, Gore® Protein Capture Device, Cytiva HiTrap™ Fibro PrismA, and Sartorius Sartobind® Protein A. Performance metrics include dynamic binding capacity, equilibrium binding capacity, regeneration-reuse, impurity clearance, and elution volumes. Physical properties include permeability, pore diameter, specific surface area, and dead volume. Key results indicate that all membranes except the Gore® Protein Capture Device operate with flow rate-independent binding capacities; the Purilogics Purexa™ PrA and Cytiva HiTrap Fibro™ PrismA have binding capacities on par with resins, with orders of magnitude faster throughput; and dead volume and hydrodynamics play major roles in elution behavior. Results from this study will enable bioprocess scientists to understand the ways that Protein A membranes can fit into their antibody process development strategies.

4.
Comput Chem Eng ; 1732023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37064815

RESUMO

In this work, we discuss the use of surrogate functions and a new optimization framework to create an efficient and robust computational framework for process design. Our model process is the capture chromatography unit operation for monoclonal antibody purification, an important step in biopharmaceutical manufacturing. Simulating this unit operation involves solving a system of non-linear partial differential equations, which can have high computational cost. We implemented surrogate functions to reduce the computational time and make the framework more attractive for industrial applications. This strategy yielded accurate results with a 93% decrease in processing time. Additionally, we developed a new optimization framework to reduce the number of simulations needed to generate a solution to the optimization problem. We demonstrate the performance of our new framework, which uses MATLAB built-in tools, by comparing its performance against individual optimization algorithms for problems with integer, continuous, and mixed-integer variables.

5.
J Chromatogr A ; 1689: 463755, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36586284

RESUMO

We developed a computational framework that integrates commercial software components to perform customizable technoeconomic feasibility analyses. The use of multiple software packages overcomes the shortcomings of each to provide a detailed simulation that can be used for sensitivity analyses and optimizations. In this paper, the framework was used to evaluate the performance of monoclonal antibody capture processes. To this end, the simulation framework incorporated dynamic models for the affinity chromatography step that were validated with experimental breakthrough curves. The results were integrated with an Intelligen SuperPro Designer process simulation for the evaluation of key performance indicators of the operations. As proof of concept, the framework was used to perform a sensitivity analysis and optimization for a case study in which we sought to compare membrane and resin chromatography for disposable and reusable batch capture platforms. Two membranes and one resin were selected for the capture media, which yielded six process alternatives to compare. The objective functions were set to be cost of goods, process time, and buffer utilization. The results of the optimization of these process alternatives were a set of operating conditions that display tradeoffs between competing objectives. From this application exercise, we conclude that the framework can handle multiple variables and objectives, and it is adaptable to platforms with different chromatography media and operating modes. Additionally, the framework is capable of providing ad hoc analyses for decision making in a specific production context.


Assuntos
Anticorpos Monoclonais , Software , Anticorpos Monoclonais/química , Cromatografia de Afinidade/métodos , Simulação por Computador
6.
Polymers (Basel) ; 14(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36080514

RESUMO

We explored two approaches to recover uranium and plutonium from aqueous solutions at pH 4 and pH 7 using water-soluble star-like polyacrylamide polymers with a dextran core. In the first approach, a solution comprising a neutral or ionomer polymer was mixed with a radionuclide solution to form polymer-metal complexes that were then retained by ultrafiltration (UF) membranes under applied pressure. The same polymers were first deposited on the membrane in the second approach using pressure-driven flow. The applied polymers had an overall diameter of gyration of 120 nm, which exceeded the nominal diameter of the UF membrane pores. The polymers showed a high affinity to uranyl but could also be used to extract Pu from neutral or near-neutral pH solutions. Direct-flow single-step filtration and alpha spectrometry demonstrated that the UF membranes containing star-like copolymers could recover 99% of U and up to 60% of Pu from deionized water after filtering 15 mL solutions containing 25 ppm and 33 ppb of the actinides, correspondingly. The sorption capacity of the polymers for uranium could be measured as 1mg U per mg of the polymer after six subsequent filtration steps. Alpha spectroscopy of the deposited actinides revealed peculiarities of the structural organization of polymers and their complexes with U or Pu, depending on the approach. Though both approaches were efficient, the second approach (deposition of the polymer on the membrane followed by filtration) has an additional advantage of protecting the membrane pores from capillary collapse by filling them with the polymer chains. Therefore, these polymer-modified membranes could be used either in continuous or multi-step filtration process with drying after each step without deterioration of their sorption characteristics.

7.
Anal Chim Acta ; 1220: 339997, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35868695

RESUMO

Traditional radiochemistry approaches for the detection of trace-level alpha-emitting radioisotopes in water require lengthy offsite sample preparations and do not lend themselves to rapid quantification. Therefore, a novel platform is needed that combines onsite purification, concentration, and isotopic screening with a fieldable detection system. This contribution describes the synthesis and characterization of polyamidoxime membranes for isolation and concentration of uranium from aqueous matrices, including high-salinity seawater. The aim was to develop a field portable screening method for the rapid quantification of isotopic distribution by alpha spectroscopy. Membranes with varying degree of modification were prepared by chemical conversion of nitrile groups to amidoxime groups on the surface of polyacrylonitrile ultrafiltration (UFPAN) membranes. Attenuated total reflectance Fourier-transform infrared spectroscopy was used to analyze changes in surface chemistry. Flow through filtration experiments conducted using deionized (DI) water and simulated seawater solutions indicated that the modified membrane was effective in capturing more than 95% of the uranium in the solution prior to breakthrough even in the presence of salt ions. Batch uptake experiments were conducted and compared with the flow through experimental data to elucidate likely binding mechanisms. Alpha spectra of uranium loaded membranes were analyzed, and the effects of solution matrix and degree of modification on peak energy resolution were studied. Peak energy resolutions of 24 ± 2 keV and 32 ± 6 keV full width at half maximum (FWHM) were obtained by loading uranium from DI and seawater solutions onto modified membranes. Full width at 10% maximum of the same spectra were calculated to be 63 ± 9 keV and 160 ± 34 keV to quantify differences seen in peak tailing. Calculations performed based on the results show that it would take less than 3 h of analysis time to screen a sample provided enough volumes of solution are available. This work offers a facile method to prepare polyamidoxime-based membranes for uranium separation and concentration at circumneutral pH values, enabling the rapid, onsite screening of unknown samples.


Assuntos
Urânio , Adsorção , Concentração de Íons de Hidrogênio , Água do Mar/química , Urânio/análise , Água/química
8.
Membranes (Basel) ; 11(10)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34677496

RESUMO

Membrane surface patterning is one approach used to mitigate fouling. This study used a combination of flux decline measurements and visualization experiments to evaluate the effectiveness of a microscale herringbone pattern for reducing protein fouling on polyvinylidene fluoride (PVDF) ultrafiltration membranes. Thermal embossing with woven mesh stamps was used for the first time to pattern membranes. Embossing process parameters were studied to identify conditions replicating the mesh patterns with high fidelity and to determine their effect on membrane permeability. Permeability increased or remained constant when patterning at low pressure (≤4.4 MPa) as a result of increased effective surface area; whereas permeability decreased at higher pressures due to surface pore-sealing of the membrane active layer upon compression. Flux decline measurements with dilute protein solutions showed monotonic decreases over time, with lower rates for patterned membranes than as-received membranes. These data were analyzed by the Hermia model to follow the transient nature of fouling. Confocal laser scanning microscopy (CLSM) provided complementary, quantitative, spatiotemporal information about protein deposition on as-received and patterned membrane surfaces. CLSM provided a greater level of detail for the early (pre-monolayer) stage of fouling than could be deduced from flux decline measurements. Images show that the protein immediately started to accumulate rapidly on the membranes, likely due to favorable hydrophobic interactions between the PVDF and protein, followed by decreasing rates of fouling with time as protein accumulated on the membrane surface. The knowledge generated in this study can be used to design membranes that inhibit fouling or otherwise direct foulants to deposit selectively in regions that minimize loss of flux.

9.
Biotechnol Prog ; 37(3): e3129, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33475239

RESUMO

This contribution reports on a study using Purexa™-MQ multimodal anion-exchange (AEX) membranes for protein polishing at elevated solution conductivities. Dynamic binding capacities (DBC10 ) of bovine serum albumin (BSA), human immunoglobulins, and salmon sperm DNA (ss-DNA) are reported for various salt types, salt concentrations, flowrates, and pH. Using 1 mg/ml BSA, DBC10 values for Purexa™-MQ were >90 mg/ml at conductivities up to 15 mS/cm. The membranes maintained a high, salt-tolerant BSA DBC10 of 89.8 ± 2.7 (SD) over the course of 100 bind-elute cycles. Polishing studies with acidic and basic monoclonal antibodies at >2 kg/L loads showed that Purexa™-MQ had higher clearance of host cell proteins and aggregate species at high conductivity (13 mS/cm) and in the presence of phosphate than other commercial AEX media. Purexa™-MQ also had a high ss-DNA DBC10 of 50 mg/ml at conductivities up to 15 mS/cm, markedly outperforming other commercial products. In addition to the effectiveness of Purexa™-MQ for protein polishing at elevated solution conductivities, its unusually high binding capacity for ss-DNA indicates potential applications for plasmid DNA purification.


Assuntos
Resinas de Troca Aniônica/química , Anticorpos Monoclonais , Cromatografia por Troca Iônica/métodos , Membranas Artificiais , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , DNA/química , Cloreto de Sódio/química
10.
Membranes (Basel) ; 12(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35054528

RESUMO

This contribution describes the fabrication of plutonium-adsorptive membranes by non-solvent induced phase separation. The dope solution comprised poly(vinylidene fluoride) (PVDF) and a Pu-extractive copolymer additive of PVDF-g-poly(ethylene glycol methacrylate phosphate) (EGMP) in dimethylformamide (DMF). The effects of casting conditions on membrane permeability were determined for PVDF membranes prepared with 10 wt% PVDF-g-EGMP. Direct-flow filtration and alpha spectrometry showed that membranes containing the graft copolymer could recover Pu up to 59.9 ± 3.0% from deionized water and 19.3 ± 3.5% from synthetic seawater after filtering 10 mL of 0.5 Bq/mL 238Pu. SEM-EDS analysis indicated that the graft copolymer was distributed evenly throughout the entire depth of the copolymer membranes, likely attributing to the tailing observed in the alpha spectra for 238Pu. Despite the reduction in resolution, the membranes exhibited high Pu uptake at the conditions tested, and new membrane designs that promote copolymer surface migration are expected to improve alpha spectrometry peak energy resolutions. Findings from this study also can be used to guide the development of extractive membranes for chromatographic separation of actinides from contaminated groundwater sources.

11.
Membranes (Basel) ; 12(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35054587

RESUMO

This paper reports on the use of forward osmosis (FO) with polyelectrolyte draw solutions to recover water from bioreactor mixed liquors. The work was motivated by the need for new regenerative water purification technologies to enable long-duration space missions. Osmotic membrane bioreactors may be an option for water and nutrient recovery in space if they can attain high water flux and reverse solute flux selectivity (RSFS), which quantifies the mass of permeated water per mass of draw solute that has diffused from the draw solution into a bioreactor. Water flux was measured in a direct flow system using wastewater from a municipal wastewater treatment plant and draw solutions prepared with two polyelectrolytes at different concentrations. The direct flow tests displayed a high initial flux (>10 L/m2/h) that decreased rapidly as solids accumulated on the feed side of the membrane. A test with deionized water as the feed revealed a small mass of polyelectrolyte crossover from the draw solution to the feed, yielding an RSFS of 80. Crossflow filtration experiments demonstrated that steady state flux above 2 L/m2·h could be maintained for 70 h following an initial flux decline due to the formation of a foulant cake layer. This study established that FO could be feasible for regenerative water purification from bioreactors. By utilizing a polyelectrolyte draw solute with high RSFS, we expect to overcome the need for draw solute replenishment. This would be a major step towards sustainable operation in long-duration space missions.

12.
Membranes (Basel) ; 10(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371519

RESUMO

Colloidal fouling can be mitigated by membrane surface patterning. This contribution identifies the effect of different pattern geometries on fouling behavior. Nanoscale line-and-groove patterns with different feature sizes were applied by thermal embossing on commercial nanofiltration membranes. Threshold flux values of as-received, pressed, and patterned membranes were determined using constant flux, cross-flow filtration experiments. A previously derived combined intermediate pore blocking and cake filtration model was applied to the experimental data to determine threshold flux values. The threshold fluxes of all patterned membranes were higher than the as-received and pressed membranes. The pattern fraction ratio (PFR), defined as the quotient of line width and groove width, was used to analyze the relationship between threshold flux and pattern geometry quantitatively. Experimental work combined with computational fluid dynamics simulations showed that increasing the PFR leads to higher threshold flux. As the PFR increases, the percentage of vortex-forming area within the pattern grooves increases, and vortex-induced shielding increases. This study suggests that the PFR should be higher than 1 to produce patterned membranes with maximal threshold flux values. Knowledge generated in this study can be applied to other feature types to design patterned membranes for improved control over colloidal fouling.

13.
Anal Chem ; 92(7): 5214-5221, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32189504

RESUMO

The rapid screening of plutonium from aqueous sources remains a critical challenge for nuclear nonproliferation efforts. The determination of trace-level Pu isotopes in water requires offsite sample preparation and analysis; therefore, new methods that combine plutonium purification, concentration, and isotopic screening in a fieldable detection system will provide an invaluable tool for nuclear safeguards. This contribution describes the development and characterization of thin polymer-ligand films for the isolation and concentration of waterborne Pu for direct spectroscopic analyses. Submicron thin films were prepared through spin coating onto Si wafers and consisted of combinations of polystyrene (PS) with dibenzoylmethane, thenoyltrifluoroacetone, and di(2-ethylhexyl)phosphoric acid (HDEHP). Pu uptake studies from solutions at pH from 2.3 to 6.3 indicated that only films containing HDEHP exhibited significant recovery of Pu. High alpha spectroscopy peak energy resolutions were achieved for PS-HDEHP films over a range of film thicknesses from 30 to 250 nm. A separate study was performed to evaluate uptake from a primarily Pu(V) solution where it was observed that doubling the HDEHP loading in the film increased uptake of Pu by an order of magnitude. X-ray photoelectron spectroscopy (XPS) analysis revealed that HDEHP was highly concentrated within the first few nanometers of the film at the higher loading. XPS analysis also revealed that, in the presence of water, HDEHP was stripped from the surface layer of the film at circumneutral pH. While significant losses of ligand were seen in all samples, higher loadings of HDEHP resulted in measurable amounts of ligand retained after a 12-h soak in water. Findings of this study are being used to guide the development of thin-film composite membrane-based detection methods for the rapid, fieldable analysis of Pu in water.

14.
Membranes (Basel) ; 9(8)2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357425

RESUMO

In this paper, we discuss the effect of alcohol contact on the transport properties of thin-film composite reverse osmosis membranes. Five commercial membranes were studied to quantify the changes in water permeance and sodium chloride rejection from contact with five C1-C4 monohydric, linear alcohols. Water permeance generally increased without decreasing rejection after short-term contact. The extent of these changes depends on the membrane and alcohol used. Young's modulus measurements showed decreased stiffness of the active layer after contacting the membranes with alcohol, suggesting plasticization. Data analysis using a dual-mode sorption model identified positive correlations of the initial water permeance, as well as the change in free energy of mixing between water and the alcohols, with the increase in water permeance after alcohol contact. We suggest that the mixing of water with the alcohols facilitates alcohol penetration into the active layer, likely by disrupting inter-chain hydrogen bonds, thus increasing the free volume for water permeation. Our studies provide a modeling framework to estimate the changes in transport properties after short-term contact with C1-C4 alcohols.

15.
Membranes (Basel) ; 8(4)2018 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-30453698

RESUMO

This paper discusses the role played by the mechanical stiffness of porous nanocomposite supports on thin-film composite (TFC) membrane water permeance. Helically coiled and multiwall carbon nanotubes (CNTs) were studied as additives in the nanocomposite supports. Mechanical stiffness was evaluated using tensile tests and penetration tests. While a low loading of CNTs caused macrovoids that decreased the structural integrity, adding higher loads of CNTs compensated for this effect, and this resulted in a net increase in structural stiffness. It was found that the Young's modulus of the nanocomposite supports increased by 30% upon addition of CNTs at 2 wt %. Results were similar for both types of CNTs. An empirical model for porous composite materials described the Young's modulus results. The nanocomposite supports were subsequently used to create TFC membranes. TFC membranes with stiffer supports were more effective at preventing declines in water permeance during compression. These findings support the idea that increasing the mechanical stiffness of TFC membrane nanocomposite supports is an effective strategy for enhancing water production in desalination operations.

16.
Talanta ; 189: 502-508, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30086952

RESUMO

A new sample loading procedure was developed for isotope measurements of ultra-trace amounts of Pu with thermal ionization mass spectrometry (TIMS) that is based on a polymer thin film architecture. The goals were to simplify single filament TIMS sample preparation for Pu, while preserving the sensitivity and accuracy of the resin bead loading method, and to eliminate sample losses experienced with the bead loading method. Rhenium filaments were degassed, dip-coated with a thin (~ 120 nm) hydrophobic base layer of poly(vinylbenzyl chloride) (PVBC), and spotted with an aqueous solution comprising triethylamine-quaternized PVBC and diazabicyclo[2.2.2]octane crosslinker. This procedure formed a toroidal, hydrophilic anion-exchange polymer spot surrounded by the hydrophobic base polymer. The thin film-coated filaments were direct loaded with 10 pg of New Brunswick Laboratory certified reference material (NBL CRM) 128 from a 9 M HCl matrix. Aqueous sample droplets adhered to the anion-exchange polymer spot, facilitating sample loading. Toroidal spots with a thickness of 20-30 µm generated the highest sample utilization, surpassing the sample utilization of the standard bead loading method by 175%. Measured isotopic ratios were in good agreement with the certified value of the 239Pu/242Pu ratio for NBL CRM 128. The use of dimpled filaments further aided sample loading by providing a well-shaped substrate to deposit the sample droplet. No sample losses were experienced with the thin film loading method over 65 sample analyses. Finally, polymer coatings suppressed filament aging under atmospheric conditions, enabling the bulk production of filaments with adequate shelf life for future analyses.

17.
Membranes (Basel) ; 8(2)2018 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-29861485

RESUMO

This communication describes the application of forward osmosis (FO) to concentrate stick water, a nutrient-rich water byproduct of meat rendering operations. The objectives of the study were to carry out a set of batch FO runs in concentration mode to determine the maximum achievable stick water concentration and to perform a preliminary cost analysis for operating a FO/reverse osmosis membrane separation process for comparison to an evaporative concentration process. The study examined the roles of feed and draw solution stir rates, temperature, feed concentration, and draw solution ionic strength on flux using commercial cellulose triacetate membranes. Results show that FO could concentrate the stick water up to 45 wt %; however, concentrations above about 30 wt % would be difficult to process through conventional membrane configurations. Preliminary operating cost estimations show that the energy cost of the FO process is about 5.3% of the energy costs for a single-effect thermal evaporation process; and, assuming a 2-year membrane lifetime, the total operating cost using FO membranes was estimated to be about 23.1% of the operating cost using such a thermal evaporation process.

18.
Anal Chem ; 90(6): 4144-4149, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29478315

RESUMO

This contribution describes a rapid, fieldable alpha spectroscopy sample preparation technique that minimizes consumables and decreases the nuclear forensics timeline. Functional ultrafiltration membranes are presented that selectively concentrate uranium directly from pH 6 groundwater and serve as the alpha spectroscopy substrate. Membranes were prepared by ultraviolet grafting of uranium-selective polymer chains from the membrane surface. Membranes were characterized by Fourier-transform infrared spectroscopy before and after modification to support functionalization. Membrane performance was evaluated using uranium-233 or depleted uranium in both deionized and simulated groundwater at pH 6. Functionalized membranes achieved peak energy resolutions of 31 ± 2 keV and recoveries of 81 ± 4% when prepared directly from pH 6 simulated groundwater. For simulated groundwater spiked with depleted uranium, baseline energy resolution was achieved for both isotopes (uranium-238 and uranium-234). The porous, uranium-selective substrate designs can process liters per hour of uranium-contaminated groundwater using low-pressure (<150 kPa) filtration and a 45 mm diameter membrane filter, leading to a high-throughput, one-step concentration, purification, and sample mounting process.

19.
Anal Chem ; 89(17): 8638-8642, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28764325

RESUMO

A new sample loading procedure was developed for isotope ratio measurements of ultratrace amounts of plutonium with thermal ionization mass spectrometry (TIMS). The goal was to determine the efficacy of a polymer fiber architecture for TIMS sample loading by following similar sample loading procedures as those used in bead loading. Fibers with diameter of approximately 100 µm were prepared from triethylamine-quaternized-poly(vinylbenzyl chloride) cross-linked with diazabicyclo[2.2.2]octane. Fiber sections (2.5 mm) were loaded with 10 pg of New Brunswick Laboratory certified reference material (NBL CRM) 128 from an 8 M HNO3 matrix and affixed to rhenium filaments with collodion. A single filament assembly was used for these analyses. Total ion counts (239Pu + 242Pu) and isotope ratios obtained from fiber-loaded filaments were compared to those measured by depositing Pu amended resin beads on the filament. Fiber loading was found to improve sensitivity, accuracy, and precision of isotope ratio measurements of plutonium when compared to the established resin bead loading method, while maintaining its simplicity. The average number of detected Pu+ counts was 180% greater, and there was a 72% reduction in standard deviation of ratio measurements when using fiber loading. An average deviation of 0.0012 (0.117%) from the certified isotope ratio value of NBL CRM Pu128 was measured when fiber loading versus a deviation of 0.0028 (0.284%) when bead loading. The fiber formation method presented in this study can be extended to other anion-exchange polymer chemistries and, therefore, offers a convenient platform to investigate the efficacy of novel polymer chemistries in sample loading for TIMS.

20.
Talanta ; 168: 183-187, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28391840

RESUMO

This communication presents findings on the effect of rhenium filament oxidation on thermal ionization mass spectrometry (TIMS) analyses of plutonium. Additionally, the roles of atmospheric humidity and carburization on the oxidation characteristics (i.e. aging) of rhenium filaments were studied. Degassed and carburized filaments were aged for up to 79 days under dry and humid conditions, and the growth of oxo-rhenium crystallites was investigated intermittently by scanning electron microscopy (SEM) to construct growth profiles. SEM images were analyzed to determine average crystallite size, number density, and percent surface coverage. Crystallite growth was found to be suppressed by both filament carburization and dry storage conditions (~13% relative humidity). Under humid conditions (75% relative humidity), crystallite growth progressed steadily over the investigatory period, reaching >2.3% surface coverage within 79 days of aging. Atomic ion production of Pu (Pu+) was suppressed by approximately 20% and the standard deviation of isotope ratio measurements was increased by 170% when filaments with 1% oxide surface coverage were used in sample loading. Measurement sensitivity and reproducibility are imperative for applications involving ultra-trace analysis of plutonium by TIMS. These findings offer validation for observations regarding the detrimental effect of excessive filament aging post-degassing, improve the understanding of conditions that impel the oxidation of rhenium filaments, and provide practical means to suppress the growth of oxides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...