Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Vet Sci ; 11: 1375329, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799725

RESUMO

Introduction: The reduction of nitrogen (N) and phosphorus (P) in ruminant feed is desirable due to costs and negative environmental impact. Ruminants are able to utilize N and P through endogenous recycling, particularly in times of scarcity. When N and/or P were reduced, changes in mineral homeostasis associated with modulation of renal calcitriol metabolism occurred. The aim of this study was to investigate the potential effects of dietary N- and/or P-reduction on the regulatory mechanisms of mineral transport in the kidney and its hormonal regulation in young goats. Results: During N-reduction, calcium (Ca) and magnesium (Mg) concentrations in blood decreased, accompanied by a lower protein expression of cytochrome P450 family 27 subfamily B member 1 (CYP27B1) (p = 0.016). The P-reduced fed goats had low blood phosphate concentrations with simultaneously high Ca and Mg levels. The insulin-like growth factor 1 concentrations decreased significantly with P-reduction. Furthermore, gene expression of CYP27B1 (p < 0.001) and both gene (p = 0.025) and protein (p = 0.016) expression of the fibroblast growth factor receptor 1c isoform in the kidney were also significantly reduced during a P-reduced diet. ERK1/2 activation exhibited a trend toward reduction in P-reduced animals. Interestingly, calcitriol concentrations remained unaffected by either restriction individually, but interacted significantly with N and P (p = 0.014). Additionally, fibroblast growth factor 23 mRNA expression in bone decreased significantly with P-restriction (p < 0.001). Discussion: These results shed light on the complex metabolic and regulatory responses of mineral transport of young goats to dietary N and P restriction.

2.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108315

RESUMO

Mammals respond to amino acid (AA) deficiency by initiating an AA response pathway (AAR) that involves the activation of general control nonderepressible 2 (GCN2), phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), and activation of transcription factor 4 (ATF4). In this study, the effects of protein (N) and/or phosphorus (P) restriction on the GCN2/eIF2α/ATF4 pathway in the liver and the induction of fibroblast growth factor 21 (FGF21) in young goats were investigated. An N-reduced diet resulted in a decrease in circulating essential AA (EAA) and an increase in non-essential AA (NEAA), as well as an increase in hepatic mRNA expression of GCN2 and ATF4 and protein expression of GCN2. Dietary N restriction robustly increased both hepatic FGF21 mRNA expression and circulating FGF21 levels. Accordingly, numerous significant correlations demonstrated the effects of the AA profile on the AAR pathway and confirmed an association. Furthermore, activation of the AAR pathway depended on the sufficient availability of P. When dietary P was restricted, the GCN2/eIF2α/ATF4 pathway was not initiated, and no increase in FGF21 was observed. These results illustrate how the AAR pathway responds to N- and/or P-reduced diets in ruminants, thus demonstrating the complexity of dietary component changes.


Assuntos
Fator de Iniciação 2 em Eucariotos , Proteínas Serina-Treonina Quinases , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Cabras/genética , Fator de Transcrição 4/metabolismo , Dieta , Fígado/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Int J Mol Sci ; 22(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467106

RESUMO

The intestinal absorption of phosphate (Pi) takes place transcellularly through the active NaPi-cotransporters type IIb (NaPiIIb) and III (PiT1 and PiT2) and paracellularly by diffusion through tight junction (TJ) proteins. The localisation along the intestines and the regulation of Pi absorption differ between species and are not fully understood. It is known that 1,25-dihydroxy-vitamin D3 (1,25-(OH)2D3) and phosphorus (P) depletion modulate intestinal Pi absorption in vertebrates in different ways. In addition to the apical uptake into the enterocytes, there are uncertainties regarding the basolateral excretion of Pi. Functional ex vivo experiments in Ussing chambers and molecular studies of small intestinal epithelia were carried out on P-deficient goats in order to elucidate the transepithelial Pi route in the intestine as well as the underlying mechanisms of its regulation and the proteins, which may be involved. The dietary P reduction had no effect on the duodenal and ileal Pi transport rate in growing goats. The ileal PiT1 and PiT2 mRNA expressions increased significantly, while the ileal PiT1 protein expression, the mid jejunal claudin-2 mRNA expression and the serum 1,25-(OH)2D3 levels were significantly reduced. These results advance the state of knowledge concerning the complex mechanisms of the Pi homeostasis in vertebrates.


Assuntos
Homeostase , Absorção Intestinal , Eliminação Intestinal , Fósforo na Dieta/metabolismo , Fósforo/deficiência , Animais , Calcitriol/sangue , Duodeno/metabolismo , Cabras , Íleo/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Proteínas Cotransportadoras de Sódio-Fosfato/genética , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo
4.
Physiol Rep ; 6(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29333720

RESUMO

Glucose-induced electrogenic ion transport is higher in the porcine ileum compared with the jejunum despite equal apical abundance of SGLT1. The objective of this study was a detailed determination of SGLT1 and GLUT2 expressions at mRNA and protein levels along the porcine small intestinal axis. Phosphorylation of SGLT1 at serine 418 was assessed as a potential modulator of activity. Porcine intestinal tissues taken along the intestinal axis 1 h or 3 h after feeding were analyzed for relative mRNA (RT-PCR) and protein levels (immunoblot) of SGLT1, pSGLT1, GLUT2, (p)AMPK, ß2 -receptor, and PKA substrates. Functional studies on electrogenic glucose transport were done (Ussing chambers: short circuit currents (Isc )). Additionally, effects of epinephrine (Epi) administration on segment-specific glucose transport and pSGLT1 content were examined. SGLT1 and GLUT2 expression was similar throughout the small intestines but lower in the duodenum and distal ileum. pSGLT1 abundance was significantly lower in the ileum compared with the jejunum associated with significantly higher glucose-induced Isc . SGLT1 phosphorylation was not inducible by Epi. Epi treatment decreased glucose-induced Isc and glucose flux rates in the jejunum but increased basal Isc in the ileum. Epi-induced PKA activation was detectable in jejunal tissue. These results may indicate that SGLT1 phosphorylation at Ser418 represents a structural change to compensate for certain conditions that may decrease glucose transport (unfavorable driving forces/changed apical membrane potential) rather than being the cause for the overall differences in glucose transport characteristics between the jejunum and ileum.


Assuntos
Glucose/metabolismo , Intestino Delgado/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Epinefrina/farmacologia , Feminino , Transportador de Glucose Tipo 2/metabolismo , Absorção Intestinal , Intestino Delgado/efeitos dos fármacos , Fosforilação , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Transportador 1 de Glucose-Sódio/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...