Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Microbiol ; 76: 102385, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804816

RESUMO

Throughout the golden age of antibiotic discovery, Streptomyces have been unsurpassed for their ability to produce bioactive metabolites. Yet, this success has been hampered by rediscovery. As we enter a new stage of biodiscovery, omics data and existing scientific repositories can enable informed choices on the biodiversity that may yield novel antibiotics. Here, we focus on the chemical potential of rare actinomycetes, defined as bacteria within the order Actinomycetales, but not belonging to the genus Streptomyces. They are named as such due to their less-frequent isolation under standard laboratory practices, yet there is increasing evidence to suggest these biologically diverse genera harbour considerable biosynthetic and chemical diversity. In this review, we focus on examples of successful isolation and genera that have been the focus of more concentrated biodiscovery efforts, we survey the representation of rare actinomycete taxa, compared with Streptomyces, across natural product data repositories in addition to its biosynthetic potential. This is followed by an overview of clinically useful drugs produced by rare actinomycetes and considerations for future biodiscovery efforts. There is much to learn about these underexplored taxa, and mounting evidence suggests that they are a fruitful avenue for the discovery of novel antimicrobials.


Assuntos
Actinobacteria , Streptomyces , Actinobacteria/genética , Actinobacteria/metabolismo , Actinomyces , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Streptomyces/genética , Biodiversidade
2.
Chem Sci ; 14(36): 9744-9758, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736639

RESUMO

RirA is a global iron regulator in diverse Alphaproteobacteria that belongs to the Rrf2 superfamily of transcriptional regulators, which can contain an iron-sulfur (Fe-S) cluster. Under iron-replete conditions, RirA contains a [4Fe-4S] cluster, enabling high-affinity binding to RirA-regulated operator sequences, thereby causing the repression of cellular iron uptake. Under iron deficiency, one of the cluster irons dissociates, generating an unstable [3Fe-4S] form that subsequently degrades to a [2Fe-2S] form and then to apo RirA, resulting in loss of high-affinity DNA-binding. The cluster is coordinated by three conserved cysteine residues and an unknown fourth ligand. Considering the lability of one of the irons and the resulting cluster fragility, we hypothesized that the fourth ligand may not be an amino acid residue. To investigate this, we considered that the introduction of an amino acid residue that could coordinate the cluster might stabilize it. A structural model of RirA, based on the Rrf2 family nitrosative stress response regulator NsrR, highlighted residue 8, an Asn in the RirA sequence, as being appropriately positioned to coordinate the cluster. Substitution of Asn8 with Asp, the equivalent, cluster-coordinating residue of NsrR, or with Cys, resulted in proteins that contained a [4Fe-4S] cluster, with N8D RirA exhibiting spectroscopic properties very similar to NsrR. The variant proteins retained the ability to bind RirA-regulated DNA, and could still act as repressors of RirA-regulated genes in vivo. However, they were significantly more stable than wild-type RirA when exposed to O2 and/or low iron. Importantly, they exhibited reduced capacity to respond to cellular iron levels, even abolished in the case of the N8D version, and thus were no longer iron sensing. This work demonstrates the importance of cluster fragility for the iron-sensing function of RirA, and more broadly, how a single residue substitution can alter cluster coordination and functional properties in the Rrf2 superfamily of regulators.

3.
Microbiology (Reading) ; 169(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418299

RESUMO

CutRS was the first two-component system to be identified in Streptomyces species and is highly conserved in this genus. It was reported >25 years ago that deletion of cutRS increases the production of the antibiotic actinorhodin in Streptomyces coelicolor. However, despite this early work, the function of CutRS has remained enigmatic until now. Here we show that deletion of cutRS upregulates the production of the actinorhodin biosynthetic enzymes up to 300-fold, explaining the increase in actinorhodin production. However, while ChIP-seq identified 85 CutR binding sites in S. coelicolor none of these are in the actinorhodin biosynthetic gene cluster, meaning the effect is indirect. The directly regulated CutR targets identified in this study are implicated in extracellular protein folding, including two of the four highly conserved HtrA-family foldases: HtrA3 and HtrB, and a putative VKOR enzyme, which is predicted to recycle DsbA following its catalysis of disulphide bond formation in secreted proteins. Thus, we tentatively propose a role for CutRS in sensing and responding to protein misfolding outside the cell. Since actinorhodin can oxidise cysteine residues and induce disulphide bond formation in proteins, its over production in the ∆cutRS mutant may be a response to protein misfolding on the extracellular face of the membrane.


Assuntos
Streptomyces coelicolor , Streptomyces , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Fatores de Transcrição/genética , Streptomyces/metabolismo , Antibacterianos/farmacologia , Dissulfetos/metabolismo , Regulação Bacteriana da Expressão Gênica
4.
J Nat Prod ; 86(7): 1677-1689, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37327570

RESUMO

Formicamycins and their biosynthetic intermediates the fasamycins are polyketide antibiotics produced by Streptomyces formicae KY5 from a pathway encoded by the for biosynthetic gene cluster. In this work the ability of Streptomyces coelicolor M1146 and the ability of Saccharopolyspora erythraea Δery to heterologously express the for biosynthetic gene cluster were assessed. This led to the identification of eight new glycosylated fasamycins modified at different phenolic groups with either a monosaccharide (glucose, galactose, or glucuronic acid) or a disaccharide comprised of a proximal hexose (either glucose or galactose), with a terminal pentose (arabinose) moiety. In contrast to the respective aglycones, minimal inhibitory screening assays showed these glycosylated congeners lacked antibacterial activity.


Assuntos
Galactose , Streptomyces coelicolor , Galactose/metabolismo , Antibacterianos/metabolismo , Streptomyces coelicolor/genética , Família Multigênica , Glucose/metabolismo
5.
Microb Genom ; 8(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35775972

RESUMO

Actinobacteria is an ancient phylum of Gram-positive bacteria with a characteristic high GC content to their DNA. The ActinoBase Wiki is focused on the filamentous actinobacteria, such as Streptomyces species, and the techniques and growth conditions used to study them. These organisms are studied because of their complex developmental life cycles and diverse specialised metabolism which produces many of the antibiotics currently used in the clinic. ActinoBase is a community effort that provides valuable and freely accessible resources, including protocols and practical information about filamentous actinobacteria. It is aimed at enabling knowledge exchange between members of the international research community working with these fascinating bacteria. ActinoBase is an anchor platform that underpins worldwide efforts to understand the ecology, biology and metabolic potential of these organisms. There are two key differences that set ActinoBase apart from other Wiki-based platforms: [1] ActinoBase is specifically aimed at researchers working on filamentous actinobacteria and is tailored to help users overcome challenges working with these bacteria and [2] it provides a freely accessible resource with global networking opportunities for researchers with a broad range of experience in this field.


Assuntos
Actinobacteria , Streptomyces , Actinobacteria/genética , Antibacterianos , Streptomyces/genética
6.
Microb Genom ; 8(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35446250

RESUMO

Symbioses between bacteria and their insect hosts can range from loose associations through to obligate interdependence. While fundamental evolutionary insights have been gained from the in-depth study of obligate mutualisms, there is increasing interest in the evolutionary potential of flexible symbiotic associations between hosts and their gut microbiomes. Understanding relationships between microbes and hosts also offers the potential for exploitation for insect control. Here, we investigate the gut microbiome of a global agricultural pest, the Mediterranean fruit fly (Ceratitis capitata). We used 16S rRNA profiling to compare the gut microbiomes of laboratory and wild strains raised on different diets and from flies collected from various natural plant hosts. The results showed that medfly guts harbour a simple microbiome that is primarily determined by the larval diet. However, regardless of the laboratory diet or natural plant host on which flies were raised, Klebsiella spp. dominated medfly microbiomes and were resistant to removal by antibiotic treatment. We sequenced the genome of the dominant putative Klebsiella spp. ('Medkleb') isolated from the gut of the Toliman wild-type strain. Genome-wide ANI analysis placed Medkleb within the K. oxytoca / michiganensis group. Species level taxonomy for Medkleb was resolved using a mutli-locus phylogenetic approach - and molecular, sequence and phenotypic analyses all supported its identity as K. michiganensis. Medkleb has a genome size (5825435 bp) which is 1.6 standard deviations smaller than the mean genome size of free-living Klebsiella spp. Medkleb also lacks some genes involved in environmental sensing. Moreover, the Medkleb genome contains at least two recently acquired unique genomic islands as well as genes that encode pectinolytic enzymes capable of degrading plant cell walls. This may be advantageous given that the medfly diet includes unripe fruits containing high proportions of pectin. The results suggest that the medfly harbours a commensal gut bacterium that may have developed a mutualistic association with its host and provide nutritional benefits.


Assuntos
Ceratitis capitata , Animais , Bactérias , Ceratitis capitata/genética , Ceratitis capitata/microbiologia , Klebsiella/genética , Filogenia , RNA Ribossômico 16S/genética , Simbiose
7.
Cell Host Microbe ; 30(3): 273-274, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35271795

RESUMO

Colistin is an antibiotic of last resort for treating Gram-negative bacterial infections, but resistance is spreading rapidly. In a recent issue of Nature, Wang et al. use genome mining to identify and synthesize a natural variant that bypasses colistin resistance and offers new hope for tackling antimicrobial resistance.


Assuntos
Colistina , Infecções por Bactérias Gram-Negativas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Colistina/farmacologia , Colistina/uso terapêutico , Resistência a Medicamentos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Humanos
8.
FEMS Microbiol Lett ; 369(1)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35323924

RESUMO

Ammonia-oxidising archaea (AOA) are environmentally important microorganisms involved in the biogeochemical cycling of nitrogen. Routine cultivation of AOA is exclusively performed in liquid cultures and reports on their growth on solid medium are scarce. The ability to grow AOA on solid medium would be beneficial for not only the purification of enrichment cultures but also for developing genetic tools. The aim of this study was to develop a reliable method for growing individual colonies from AOA cultures on solid medium. Three phylogenetically distinct AOA strains were tested: 'Candidatus Nitrosocosmicus franklandus C13', Nitrososphaera viennensis EN76 and 'Candidatus Nitrosotalea sinensis Nd2'. Of the gelling agents tested, agar and Bacto-agar severely inhibited growth of all three strains. In contrast, both 'Ca. N. franklandus C13' and N. viennensis EN76 tolerated Phytagel™ while the acidophilic 'Ca. N. sinensis Nd2' was completely inhibited. Based on these observations, we developed a Liquid-Solid (LS) method that involves immobilising cells in Phytagel™ and overlaying with liquid medium. This approach resulted in the development of visible distinct colonies from 'Ca. N. franklandus C13' and N. viennensis EN76 cultures and lays the groundwork for the genetic manipulation of this group of microorganisms.


Assuntos
Amônia , Archaea , Ágar , Archaea/genética , Meios de Cultura , Nitrificação , Oxirredução , Filogenia , Microbiologia do Solo
9.
Anim Microbiome ; 3(1): 84, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930493

RESUMO

BACKGROUND: The vertebrate gut microbiome (GM) can vary substantially across individuals within the same natural population. Although there is evidence linking the GM to health in captive animals, very little is known about the consequences of GM variation for host fitness in the wild. Here, we explore the relationship between faecal microbiome diversity, body condition, and survival using data from the long-term study of a discrete natural population of the Seychelles warbler (Acrocephalus sechellensis) on Cousin Island. To our knowledge, this is the first time that GM differences associated with survival have been fully characterised for a natural vertebrate species, across multiple age groups and breeding seasons. RESULTS: We identified substantial variation in GM community structure among sampled individuals, which was partially explained by breeding season (5% of the variance), and host age class (up to 1% of the variance). We also identified significant differences in GM community membership between adult birds that survived, versus those that had died by the following breeding season. Individuals that died carried increased abundances of taxa that are known to be opportunistic pathogens, including several ASVs in the genus Mycobacterium. However, there was no association between GM alpha diversity (the diversity of bacterial taxa within a sample) and survival to the next breeding season, or with individual body condition. Additionally, we found no association between GM community membership and individual body condition. CONCLUSIONS: These results demonstrate that components of the vertebrate GM can be associated with host fitness in the wild. However, further research is needed to establish whether changes in bacterial abundance contribute to, or are only correlated with, differential survival; this will add to our understanding of the importance of the GM in the evolution of host species living in natural populations.

10.
BMC Biol ; 19(1): 205, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526023

RESUMO

BACKGROUND: The cuticular microbiomes of Acromyrmex leaf-cutting ants pose a conundrum in microbiome biology because they are freely colonisable, and yet the prevalence of the vertically transmitted bacteria Pseudonocardia, which contributes to the control of Escovopsis fungus garden disease, is never compromised by the secondary acquisition of other bacterial strains. Game theory suggests that competition-based screening can allow the selective recruitment of antibiotic-producing bacteria from the environment, by providing abundant resources to foment interference competition between bacterial species and by using Pseudonocardia to bias the outcome of competition in favour of antibiotic producers. RESULTS: Here, we use RNA-stable isotope probing (RNA-SIP) to confirm that Acromyrmex ants can maintain a range of microbial symbionts on their cuticle by supplying public resources. We then used RNA sequencing, bioassays, and competition experiments to show that vertically transmitted Pseudonocardia strains produce antibacterials that differentially reduce the growth rates of other microbes, ultimately biassing the bacterial competition to allow the selective establishment of secondary antibiotic-producing strains while excluding non-antibiotic-producing strains that would parasitise the symbiosis. CONCLUSIONS: Our findings are consistent with the hypothesis that competition-based screening is a plausible mechanism for maintaining the integrity of the co-adapted mutualism between the leaf-cutting ant farming symbiosis and its defensive microbiome. Our results have broader implications for explaining the stability of other complex symbioses involving horizontal acquisition.


Assuntos
Microbiota , Animais , Antibacterianos/farmacologia , Formigas , Evolução Biológica , RNA , Simbiose
11.
Front Mol Biosci ; 8: 686110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222338

RESUMO

Streptomyces species are saprophytic soil bacteria that produce a diverse array of specialized metabolites, including half of all known antibiotics. They are also rhizobacteria and plant endophytes that can promote plant growth and protect against disease. Several studies have shown that streptomycetes are enriched in the rhizosphere and endosphere of the model plant Arabidopsis thaliana. Here, we set out to test the hypothesis that they are attracted to plant roots by root exudates, and specifically by the plant phytohormone salicylate, which they might use as a nutrient source. We confirmed a previously published report that salicylate over-producing cpr5 plants are colonized more readily by streptomycetes but found that salicylate-deficient sid2-2 and pad4 plants had the same levels of root colonization by Streptomyces bacteria as the wild-type plants. We then tested eight genome sequenced Streptomyces endophyte strains in vitro and found that none were attracted to or could grow on salicylate as a sole carbon source. We next used 13CO2 DNA stable isotope probing to test whether Streptomyces species can feed off a wider range of plant metabolites but found that Streptomyces bacteria were outcompeted by faster growing proteobacteria and did not incorporate photosynthetically fixed carbon into their DNA. We conclude that, given their saprotrophic nature and under conditions of high competition, streptomycetes most likely feed on more complex organic material shed by growing plant roots. Understanding the factors that impact the competitiveness of strains in the plant root microbiome could have consequences for the effective application of biocontrol strains.

12.
Environ Microbiome ; 16(1): 12, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34154664

RESUMO

BACKGROUND: Conventional methods of agricultural pest control and crop fertilisation are unsustainable. To meet growing demand, we must find ecologically responsible means to control disease and promote crop yields. The root-associated microbiome can aid plants with disease suppression, abiotic stress relief, and nutrient bioavailability. The aim of the present work was to profile the community of bacteria, fungi, and archaea associated with the wheat rhizosphere and root endosphere in different conditions. We also aimed to use 13CO2 stable isotope probing (SIP) to identify microbes within the root compartments that were capable of utilising host-derived carbon. RESULTS: Metabarcoding revealed that community composition shifted significantly for bacteria, fungi, and archaea across compartments. This shift was most pronounced for bacteria and fungi, while we observed weaker selection on the ammonia oxidising archaea-dominated archaeal community. Across multiple soil types we found that soil inoculum was a significant driver of endosphere community composition, however, several bacterial families were identified as core enriched taxa in all soil conditions. The most abundant of these were Streptomycetaceae and Burkholderiaceae. Moreover, as the plants senesce, both families were reduced in abundance, indicating that input from the living plant was required to maintain their abundance in the endosphere. Stable isotope probing showed that bacterial taxa within the Burkholderiaceae family, among other core enriched taxa such as Pseudomonadaceae, were able to use root exudates, but Streptomycetaceae were not. CONCLUSIONS: The consistent enrichment of Streptomycetaceae and Burkholderiaceae within the endosphere, and their reduced abundance after developmental senescence, indicated a significant role for these families within the wheat root microbiome. While Streptomycetaceae did not utilise root exudates in the rhizosphere, we provide evidence that Pseudomonadaceae and Burkholderiaceae family taxa are recruited to the wheat root community via root exudates. This deeper understanding crop microbiome formation will enable researchers to characterise these interactions further, and possibly contribute to ecologically responsible methods for yield improvement and biocontrol in the future.

13.
Cell Chem Biol ; 28(4): 515-523.e5, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33440167

RESUMO

The formicamycins are promising antibiotics first identified in Streptomyces formicae KY5, which produces the compounds at low levels. Here, we show that by understanding the regulation of the for biosynthetic gene cluster (BGC), we can rewire the BGC to increase production levels. The for BGC consists of 24 genes expressed on nine transcripts. The MarR regulator ForJ represses expression of seven transcripts encoding the major biosynthetic genes as well as the ForGF two-component system that initiates biosynthesis. We show that overexpression of forGF in a ΔforJ background increases formicamycin production 10-fold compared with the wild-type. De-repression, by deleting forJ, also switches on biosynthesis in liquid culture and induces the production of additional, previously unreported formicamycin congeners. Furthermore, combining de-repression with mutations in biosynthetic genes leads to biosynthesis of additional bioactive precursors.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Streptomyces/química , Antibacterianos/química , Antibacterianos/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Família Multigênica
14.
Chem Sci ; 11(31): 8125-8131, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-33033611

RESUMO

Fasamycin natural products are biosynthetic precursors of the formicamycins. Both groups of compounds are polyketide natural products that exhibit potent antibacterial activity despite displaying different three-dimensional topologies. We show here that transformation of fasamycin into formicamycin metabolites requires two gene products and occurs via a novel two-step ring expansion-ring contraction pathway. Deletion of forX, encoding a flavin dependent monooxygenase, abolished formicamycin production and leads to accumulation of fasamycin E. Deletion of the adjacent gene forY, encoding a flavin dependent oxidoreductase, also abolished formicamycin biosynthesis and led to the accumulation of new lactone metabolites that represent Baeyer-Villiger oxidation products of the fasamycins. These results identify ForX as a Baeyer-Villiger monooxygenase capable of dearomatizing ring C of the fasamycins. Through in vivo cross feeding and biomimetic semi-synthesis experiments we showed that these lactone products represent biosynthetic intermediates that are reduced to formicamycins in a unique reductive ring contraction reaction catalyzed by ForY.

15.
Curr Opin Chem Biol ; 59: 172-181, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32949983

RESUMO

Fungus-growing attine ants are under constant threat from fungal pathogens such as the specialized mycoparasite Escovopsis, which uses combined physical and chemical attack strategies to prey on the fungal gardens of the ants. In defence, some species assemble protective microbiomes on their exoskeletons that contain antimicrobial-producing Actinobacteria. Underlying this network of mutualistic and antagonistic interactions are an array of chemical signals. Escovopsis weberi produces the shearinine terpene-indole alkaloids, which affect ant behaviour, diketopiperazines to combat defensive bacteria, and other small molecules that inhibit the fungal cultivar. Pseudonocardia and Streptomyces mutualist bacteria produce depsipeptide and polyene macrolide antifungals active against Escovopsis spp. The ant nest metabolome is further complicated by competition between defensive bacteria, which produce antibacterials active against even closely related species.


Assuntos
Formigas/microbiologia , Hypocreales/fisiologia , Actinobacteria/fisiologia , Animais , Interações Hospedeiro-Patógeno , Pseudonocardia/fisiologia , Streptomyces/fisiologia , Simbiose
16.
Appl Environ Microbiol ; 86(16)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32561579

RESUMO

Streptomyces bacteria are ubiquitous in soils and are well known for producing secondary metabolites, including antimicrobials. Increasingly, they are being isolated from plant roots, and several studies have shown they are specifically recruited to the rhizosphere and the endosphere of the model plant Arabidopsis thaliana Here, we test the hypothesis that Streptomyces bacteria have a beneficial effect on A. thaliana growth and could potentially be used as plant probiotics. To do this, we selectively isolated streptomycetes from surface-washed A. thaliana roots and generated high-quality genome sequences for five strains, which we named L2, M2, M3, N1, and N2. Reinfection of A. thaliana plants with L2, M2, and M3 significantly increased plant biomass individually and in combination, whereas N1 and N2 had a negative effect on plant growth, likely due to their production of polyene natural products which can bind to phytosterols and reduce plant growth. N2 exhibits broad-spectrum antimicrobial activity and makes filipin-like polyenes, including 14-hydroxyisochainin which inhibits the take-all fungus, Gaeumannomyces graminis var. tritici N2 antifungal activity as a whole was upregulated ∼2-fold in response to indole-3-acetic acid (IAA), suggesting a possible role during competition in the rhizosphere. Furthermore, coating wheat seeds with N2 spores protected wheat seedlings against take-all disease. We conclude that at least some soil-dwelling streptomycetes confer growth-promoting benefits on A. thaliana, while others might be exploited to protect crops against disease.IMPORTANCE We must reduce reliance on agrochemicals, and there is increasing interest in using bacterial strains to promote plant growth and protect against disease. Our study follows up reports that Arabidopsis thaliana specifically recruits Streptomyces bacteria to its roots. We test the hypotheses that they offer benefits to their A. thaliana hosts and that strains isolated from these plants might be used as probiotics. We isolated Streptomyces strains from A. thaliana roots and genome sequenced five phylogenetically distinct strains. Genome mining and bioassays indicated that all five have plant growth-promoting properties, including production of indole-3-acetic acid (IAA), siderophores, and aminocyclopropane-1-carboxylate (ACC) deaminase. Three strains significantly increased A. thaliana growth in vitro and in combination in soil. Another produces potent filipin-like antifungals and protected germinating wheat seeds against the fungal pathogen Gaeumannomyces graminis var. tritici (wheat take-all fungus). We conclude that introducing Streptomyces strains into the root microbiome provides significant benefits to plants.


Assuntos
Arabidopsis/fisiologia , Endófitos/fisiologia , Interações entre Hospedeiro e Microrganismos , Streptomyces/fisiologia , Triticum/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Microbiologia do Solo , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
17.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31732571

RESUMO

Most clinical antibiotics are derived from actinomycete natural products discovered at least 60 years ago. However, the repeated rediscovery of known compounds led the pharmaceutical industry to largely discard microbial natural products (NPs) as a source of new chemical diversity. Recent advances in genome sequencing have revealed that these organisms have the potential to make many more NPs than previously thought. Approaches to unlock NP biosynthesis by genetic manipulation of strains, by the application of chemical genetics, or by microbial cocultivation have resulted in the identification of new antibacterial compounds. Concomitantly, intensive exploration of coevolved ecological niches, such as insect-microbe defensive symbioses, has revealed these to be a rich source of chemical novelty. Here, we report the new lanthipeptide antibiotic kyamicin, which was generated through the activation of a cryptic biosynthetic gene cluster identified by genome mining Saccharopolyspora species found in the obligate domatium-dwelling ant Tetraponera penzigi of the ant plant Vachellia drepanolobium Transcriptional activation of this silent gene cluster was achieved by ectopic expression of a pathway-specific activator under the control of a constitutive promoter. Subsequently, a heterologous production platform was developed which enabled the purification of kyamicin for structural characterization and bioactivity determination. This strategy was also successful for the production of lantibiotics from other genera, paving the way for a synthetic heterologous expression platform for the discovery of lanthipeptides that are not detected under laboratory conditions or that are new to nature.IMPORTANCE The discovery of novel antibiotics to tackle the growing threat of antimicrobial resistance is impeded by difficulties in accessing the full biosynthetic potential of microorganisms. The development of new tools to unlock the biosynthesis of cryptic bacterial natural products will greatly increase the repertoire of natural product scaffolds. Here, we report a strategy for the ectopic expression of pathway-specific positive regulators that can be rapidly applied to activate the biosynthesis of cryptic lanthipeptide biosynthetic gene clusters. This allowed the discovery of a new lanthipeptide antibiotic directly from the native host and via heterologous expression.


Assuntos
Antibacterianos/biossíntese , Bacteriocinas/biossíntese , Genes Bacterianos , Saccharopolyspora/química , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Formigas/microbiologia , Bacteriocinas/isolamento & purificação , Bacteriocinas/metabolismo , Fabaceae , Família Multigênica , Saccharopolyspora/genética
19.
Curr Opin Microbiol ; 51: 72-80, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31733401

RESUMO

The first antibiotic, salvarsan, was deployed in 1910. In just over 100 years antibiotics have drastically changed modern medicine and extended the average human lifespan by 23 years. The discovery of penicillin in 1928 started the golden age of natural product antibiotic discovery that peaked in the mid-1950s. Since then, a gradual decline in antibiotic discovery and development and the evolution of drug resistance in many human pathogens has led to the current antimicrobial resistance crisis. Here we give an overview of the history of antibiotic discovery, the major classes of antibiotics and where they come from. We argue that the future of antibiotic discovery looks bright as new technologies such as genome mining and editing are deployed to discover new natural products with diverse bioactivities. We also report on the current state of antibiotic development, with 45 drugs currently going through the clinical trials pipeline, including several new classes with novel modes of action that are in phase 3 clinical trials. Overall, there are promising signs for antibiotic discovery, but changes in financial models are required to translate scientific advances into clinically approved antibiotics.


Assuntos
Antibacterianos/história , Descoberta de Drogas/história , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Descoberta de Drogas/tendências , História do Século XX , História do Século XXI , Humanos
20.
Nat Commun ; 10(1): 3611, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399587

RESUMO

The formicamycin biosynthetic gene cluster encodes two groups of type 2 polyketide antibiotics: the formicamycins and their biosynthetic precursors the fasamycins, both of which have activity against methicillin-resistant Staphylococcus aureus. Here, we report the formicapyridines which are encoded by the same gene cluster and are structurally and biosynthetically related to the fasamycins and formicamycins but comprise a rare pyridine moiety. These compounds are trace-level metabolites formed by derailment of the major biosynthetic pathway. Inspired by evolutionary logic we show that rational mutation of a single gene in the biosynthetic gene cluster encoding an antibiotic biosynthesis monooxygenase (ABM) superfamily protein leads to a significant increase both in total formicapyridine production and their enrichment relative to the fasamycins/formicamycins. Our observations broaden the polyketide biosynthetic landscape and identify a non-catalytic role for ABM superfamily proteins in type II polyketide synthase assemblages for maintaining biosynthetic pathway fidelity.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/química , Oxigenases de Função Mista/química , Policetídeos/metabolismo , Domínios Proteicos/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Engenharia Metabólica , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Oxigenases de Função Mista/genética , Família Multigênica , Mutação , Metabolismo Secundário , Streptomyces/genética , Streptomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...