Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 25(14): 1945-1955, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37158190

RESUMO

Constructed wetlands (CWs) represent a natural wastewater treatment process, offering economic and environmental advantages. These systems can remove several components that may cause negative impacts on the environment. Media types and plant species are crucial influencing factors for the removal of contaminants in CWs. The goal of this study is to evaluate the capacity of a CW using Tamarix spp. with three filter media to treat FGD wastewater. Planted and unplanted CWs were set up with varying types of biofilm support media: 3 bioreactors were operated with 50% gravel and 50% zeolite (v/v), 3 with 100% gravel, and 3 with 50% gravel, 25% zeolite, and 25% silage. Planted CWs had the greatest potential to reduce the concentrations of B, K, and NH4+-N in 64.9%, 91.1%, and 92.5%, respectively, when used in addition to the filter composed by 50% gravel + 50% zeolite, which was the only media keeping the plants alive for 60 days. The results showed that the optimal selection of filter media depends on the purpose for which the treatment has been projected for, considering that the types of substrates influenced the nature of the contaminant removal in the CW.


Salinity impact on Constructed wetlands (CWs) is still scarce in the literature. The novelty is the choice of a salt cedar (Tamarix spp.) combined with three filter media types ((1) gravel; (2) gravel and zeolite; (3) gravel, zeolite, and silage) to treat flue gas desulfurization wastewater in CWs. Our findings demonstrate that filter media containing 50% gravel + 50% zeolite can decrease the toxicity of contaminants from FGD wastewater in plants.


Assuntos
Purificação da Água , Zeolitas , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Águas Residuárias , Plantas , Áreas Alagadas
2.
J Environ Manage ; 235: 403-413, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30708277

RESUMO

The Soil Conservation Service Curve Number (SCS-CN, or CN) is a widely used method to estimate runoff from rainfall events. It has been adapted to many parts of the world with different land uses, land cover types, and climatic conditions and successfully applied to situations ranging from simple runoff calculations and land use change assessment to comprehensive hydrologic/water quality simulations. However, the CN method lacks the ability to incorporate seasonal variations in vegetated surface conditions, and unnoticed landuse/landcover (LULC) change that shape infiltration and storm runoff. Plant phenology is a main determinant of changes in hydrologic processes and water balances across seasons through its influence on surface roughness and evapotranspiration. This study used regression analysis to develop a dynamic CN (CNNDVI) based on seasonal variations in the remotely-sensed Normalized Difference Vegetation Index (NDVI) to monitor intra-annual plant phenological development. A time series of 16-day MODIS NDVI (MOD13Q1 Collection 5) images were used to monitor vegetation development and provide NDVI data necessary for CNNDVI model calibration and validation. Twelve years of rainfall and runoff data (2001-2012) from four small watersheds located in the Konza Prairie Biological Station, Kansas were used to develop, calibrate, and validate the method. Results showed CNNDVI performed significantly better in predicting runoff with calibrated CNNDVI runoff increasing by approximately 0.74 for every unit increase in observed runoff compared to 0.46 for SCS-CN runoff and was more highly correlated to observed runoff (r = 0.78 vs. r = 0.38). In addition, CNNDVI runoff had better NSE (0.53) and PBIAS (4.22) compared to the SCS-CN runoff (-0.87 and -94.86 respectively). In the validated model, CNNDVI runoff increased by approximately 0.96 for every unit of observed runoff, while SCS-CN runoff increased by 0.49. Validated runoff was also better correlated to observed runoff than SCS-CN runoff (r = 0.52 vs. r = 0.33). These findings suggest that the CNNDVI can yield improved estimates of surface runoff from precipitation events, leading to more informed water and land management decisions.


Assuntos
Hidrologia , Movimentos da Água , Kansas , Solo , Qualidade da Água
3.
J Environ Qual ; 47(4): 873-883, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30025069

RESUMO

The soil material in constructed wetlands is effective in retaining Se from flue-gas desulfurization (FGD) wastewater (WW), but reducing conditions can enhance native-soil As mobility. A laboratory-based soil column experiment was performed to assess the effectiveness of ferrihydrite (Fh) in minimizing the mobility of native-soil As in water-saturated soil material. A saline FGD WW mixture (i.e., influent) was delivered to columns of untreated and Fh-treated soil for 60 d. One untreated column and one Fh-treated column were then subjected to drying, followed by an additional 30 d of influent delivery. Although the influent was low in As (∼1 µg L) and the soil As level was normal, the total dissolved As concentration of effluent from the untreated columns increased with time, from ∼1 µg L to a maximum of ∼27 µg L. In contrast, effluent from the Fh-treated columns remained low in As (i.e., <5 µg L). The strong correlation between total dissolved Fe and As in the effluent suggested that reductive dissolution of native-soil Fe minerals was responsible for releasing As into solution. Results from X-ray absorption spectroscopy showed newly precipitated Fe minerals in the Fh-treated soil, and the remaining As was mainly As(V) species in both the untreated and Fh-treated soils. Thus, native-soil As mobilized under saturated conditions can be sequestered by adding poorly crystalline Fe oxides to soil prior to saturation. Furthermore, results obtained by drying and rewetting the columns showed that saturated conditions must be maintained to minimize the remobilization of sequestered As and retained Se.


Assuntos
Arsênio/química , Compostos Férricos/química , Poluentes do Solo/química , Águas Residuárias , Ferro , Oxirredução , Solo
4.
Ecohydrology ; 11(1): 1909, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29682151

RESUMO

This study quantified climatological and hydrological trends and relationships to presence and distribution of two native aquatic species in the Kansas River Basin over the past half-century. Trend analyses were applied to indicators of hydrologic alteration (IHAs) at 34 streamgages over a 50-year period (1962-2012). Results showed a significant negative trend in annual streamflow for 10 of 12 western streamgages (up to -7.65 mm/50 yr) and smaller negative trends for most other streamgages. Significant negative trends in western Basin streamflow were more widespread in summer (12 stations) than winter or spring (6 stations). The negative-trend magnitude and significance decreased from west to east for maximum-flow IHAs. Minimum- flow IHAs, however, significantly decreased at High Plains streamgages but significantly increased at Central Great Plains streamgages. Number of zero-flow days showed positive trends in the High Plains. Most streamgages showed negative trends in low- and high-flow pulse frequency and high-flow pulse duration, and positive trends in low-flow pulse duration. These results were consistent with increasing occurrence of drought. Shift in occurrence from present (1860-1950) to absent (2000-2012) was significantly related (p<0.10) to negative trends of 1-day maximum flows (both species) and indices associated with reduced spawning-season flows for Plains Minnow and shifting annual-flow timing and increased flow intermittency for Common Shiner. Both species were absent for all western Basin sites and had different responses to hydrological index trends at eastern Basin sites. These results demonstrate ecohydrological index changes impact distributions of native fish and suggest target factors for assessment or restoration activities.

5.
Water Sci Technol ; 76(9-10): 2698-2709, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29168710

RESUMO

Industrial wastewater from the flue gas desulfurization (FGD) process is characterized by the presence of trace elements of concern, such as selenium (Se) and boron (B) and relatively high salinity. To simulate treatment that FGD wastewater undergoes during transport through soils in subsurface treatment systems, a column study (140-d duration) was conducted with native Kansas soil and saline FGD wastewater, containing high Se and B concentrations (170 µg/L Se and 5.3 mg/L B) and negligible arsenic (As) concentration (∼1.2 µg/L As). Se, B, and As, and dissolved organic carbon concentrations and organic matter spectroscopic properties were measured in the influent and outflow. Influent Se concentrations were reduced by only ∼half in all treatments, and results suggest that Se sorption was inhibited by high salinity of the FGD wastewater. By contrast, relative concentrations (C/Co) of B in the outflow were typically <10%, suggesting that B sequestration may have been enhanced by higher salinity. Unexpected elevated As concentrations in the outflow (at >150 µg/L in the treatment with labile organic carbon addition) suggest that soils not previously known to be geogenic arsenic sources have the potential to release As to groundwater in the presence of high salinity wastewater and under reducing conditions.


Assuntos
Solo/química , Oligoelementos/análise , Águas Residuárias/química , Arsênio/análise , Boro/análise , Água Subterrânea/química , Salinidade , Selênio/análise , Poluentes do Solo/análise
6.
J Environ Qual ; 46(2): 384-392, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28380560

RESUMO

Constructed wetland treatment systems are used to remove selenium (Se) from flue-gas desulfurization (FGD) wastewater (WW). However, direct confirmation of the mechanism responsible for FGD WW Se retention in soil is lacking. A laboratory-based soil column study was performed to develop an evidence-based mechanism of Se retention and to study the behavior and the retention capacity of FGD WW constituents in water-saturated soil. A deoxygenated 1:1 mixture of FGD WW and raw water was delivered to the columns bottom-up at a flux of 1.68 cm d for 100 d. Some of the columns were flushed with the raw water at the same rate for an additional 100 d. Column effluent was analyzed for constituents of concern. Results showed a complete retention of FGD WW Se in the soil materials. Boron and fluorine were partially retained; however, sulfur, sodium, and chlorine retention was poor, agreeing with field observations. The FGD WW Se was retained in soil near the inlet end of the columns, indicating its limited mobility under reduced conditions. Sequential extraction procedure revealed that retained Se was mainly sequestered as stable/residual forms. Bulk- and micro-X-ray absorption near-edge structure spectroscopy confirmed that Se was mainly retained as reduced/stable species [Se(IV), organic Se, and Se(0)]. This study provides direct evidence for FGD WW Se retention in water-saturated soil via the transformation of oxidized Se into reduced/stable forms.


Assuntos
Selênio/química , Águas Residuárias , Purificação da Água , Selênio/análise , Solo , Poluentes do Solo , Água , Áreas Alagadas
7.
Water Environ Res ; 87(9): 849-62, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26961478

RESUMO

Since its inception, Low Impact Development (LID) has become part of urban stormwater management across the United States, marking progress in the gradual transition from centralized to distributed runoff management infrastructure. The ultimate goal of LID is full, cost-effective implementation to maximize watershed-scale ecosystem services and enhance resilience. To reach that goal in the Great Plains, the multi-disciplinary author team presents this critical review based on thirteen technical questions within the context of regional climate and socioeconomics across increasing complexities in scale and function. Although some progress has been made, much remains to be done including continued basic and applied research, development of local LID design specifications, local demonstrations, and identifying funding mechanisms for these solutions. Within the Great Plains and beyond, by addressing these technical questions within a local context, the goal of widespread acceptance of LID can be achieved, resulting in more effective and resilient stormwater management.


Assuntos
Conservação dos Recursos Naturais/economia , Ecologia/métodos , Ecossistema , Purificação da Água/métodos , Clima , Indústria da Construção , Ecologia/economia , Meio-Oeste dos Estados Unidos , Chuva , Fatores Socioeconômicos
8.
Proc Natl Acad Sci U S A ; 109(9): 3401-5, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22331914

RESUMO

Future climates are forecast to include greater precipitation variability and more frequent heat waves, but the degree to which the timing of climate variability impacts ecosystems is uncertain. In a temperate, humid grassland, we examined the seasonal impacts of climate variability on 27 y of grass productivity. Drought and high-intensity precipitation reduced grass productivity only during a 110-d period, whereas high temperatures reduced productivity only during 25 d in July. The effects of drought and heat waves declined over the season and had no detectable impact on grass productivity in August. If these patterns are general across ecosystems, predictions of ecosystem response to climate change will have to account not only for the magnitude of climate variability but also for its timing.


Assuntos
Biomassa , Mudança Climática , Poaceae/fisiologia , Secas , Ecossistema , Previsões , Umidade , Kansas , Modelos Biológicos , Poaceae/crescimento & desenvolvimento , Chuva , Estações do Ano , Solo , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...