Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 478(7370): 529-33, 2011 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-21964340

RESUMO

Recurrent chromosomal translocations involving the mixed lineage leukaemia (MLL) gene initiate aggressive forms of leukaemia, which are often refractory to conventional therapies. Many MLL-fusion partners are members of the super elongation complex (SEC), a critical regulator of transcriptional elongation, suggesting that aberrant control of this process has an important role in leukaemia induction. Here we use a global proteomic strategy to demonstrate that MLL fusions, as part of SEC and the polymerase-associated factor complex (PAFc), are associated with the BET family of acetyl-lysine recognizing, chromatin 'adaptor' proteins. These data provided the basis for therapeutic intervention in MLL-fusion leukaemia, via the displacement of the BET family of proteins from chromatin. We show that a novel small molecule inhibitor of the BET family, GSK1210151A (I-BET151), has profound efficacy against human and murine MLL-fusion leukaemic cell lines, through the induction of early cell cycle arrest and apoptosis. I-BET151 treatment in two human leukaemia cell lines with different MLL fusions alters the expression of a common set of genes whose function may account for these phenotypic changes. The mode of action of I-BET151 is, at least in part, due to the inhibition of transcription at key genes (BCL2, C-MYC and CDK6) through the displacement of BRD3/4, PAFc and SEC components from chromatin. In vivo studies indicate that I-BET151 has significant therapeutic value, providing survival benefit in two distinct mouse models of murine MLL-AF9 and human MLL-AF4 leukaemia. Finally, the efficacy of I-BET151 against human leukaemia stem cells is demonstrated, providing further evidence of its potent therapeutic potential. These findings establish the displacement of BET proteins from chromatin as a promising epigenetic therapy for these aggressive leukaemias.


Assuntos
Cromatina/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Cromatina/genética , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteômica , Transcrição Gênica/efeitos dos fármacos
2.
Nat Biotechnol ; 29(3): 255-65, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21258344

RESUMO

The development of selective histone deacetylase (HDAC) inhibitors with anti-cancer and anti-inflammatory properties remains challenging in large part owing to the difficulty of probing the interaction of small molecules with megadalton protein complexes. A combination of affinity capture and quantitative mass spectrometry revealed the selectivity with which 16 HDAC inhibitors target multiple HDAC complexes scaffolded by ELM-SANT domain subunits, including a novel mitotic deacetylase complex (MiDAC). Inhibitors clustered according to their target profiles with stronger binding of aminobenzamides to the HDAC NCoR complex than to the HDAC Sin3 complex. We identified several non-HDAC targets for hydroxamate inhibitors. HDAC inhibitors with distinct profiles have correspondingly different effects on downstream targets. We also identified the anti-inflammatory drug bufexamac as a class IIb (HDAC6, HDAC10) HDAC inhibitor. Our approach enables the discovery of novel targets and inhibitors and suggests that the selectivity of HDAC inhibitors should be evaluated in the context of HDAC complexes and not purified catalytic subunits.


Assuntos
Histona Desacetilases/química , Histona Desacetilases/metabolismo , Espectrometria de Massas/métodos , Mapeamento de Peptídeos/métodos , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos
3.
BMC Syst Biol ; 4: 120, 2010 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-20807400

RESUMO

BACKGROUND: Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed. RESULTS: Here, we present a computational analysis of the metabolism of Plasmodium falciparum, the deadliest malaria pathogen. We assembled a compartmentalized metabolic model and predicted life cycle stage specific metabolism with the help of a flux balance approach that integrates gene expression data. Predicted metabolite exchanges between parasite and host were found to be in good accordance with experimental findings when the parasite's metabolic network was embedded into that of its host (erythrocyte). Knock-out simulations identified 307 indispensable metabolic reactions within the parasite. 35 out of 57 experimentally demonstrated essential enzymes were recovered and another 16 enzymes, if additionally the assumption was made that nutrient uptake from the host cell is limited and all reactions catalyzed by the inhibited enzyme are blocked. This predicted set of putative drug targets, shown to be enriched with true targets by a factor of at least 2.75, was further analyzed with respect to homology to human enzymes, functional similarity to therapeutic targets in other organisms and their predicted potency for prophylaxis and disease treatment. CONCLUSIONS: The results suggest that the set of essential enzymes predicted by our flux balance approach represents a promising starting point for further drug development.


Assuntos
Antimaláricos/metabolismo , Biologia Computacional/métodos , Estágios do Ciclo de Vida , Redes e Vias Metabólicas , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Animais , Antimaláricos/farmacologia , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Estágios do Ciclo de Vida/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Reprodutibilidade dos Testes
4.
FEBS J ; 276(2): 410-24, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19137631

RESUMO

Kinetic modelling of complex metabolic networks - a central goal of computational systems biology - is currently hampered by the lack of reliable rate equations for the majority of the underlying biochemical reactions and membrane transporters. On the basis of biochemically substantiated evidence that metabolic control is exerted by a narrow set of key regulatory enzymes, we propose here a hybrid modelling approach in which only the central regulatory enzymes are described by detailed mechanistic rate equations, and the majority of enzymes are approximated by simplified(non mechanistic) rate equations (e.g. mass action, LinLog, Michaelis-Menten and power law) capturing only a few basic kinetic features and hence containing only a small number of parameters to be experimentally determined. To check the reliability of this approach, we have applied it to two different metabolic networks, the energy and redox metabolism of red blood cells, and the purine metabolism of hepatocytes, using in both cases available comprehensive mechanistic models as reference standards. Identification of the central regulatory enzymes was performed by employing only information on network topology and the metabolic data for a single reference state of the network [Grimbs S, Selbig J, Bulik S, Holzhutter HG & Steuer R (2007) Mol Syst Biol 3, 146, doi:10.1038/msb4100186].Calculations of stationary and temporary states under various physiological challenges demonstrate the good performance of the hybrid models. We propose the hybrid modelling approach as a means to speed up the development of reliable kinetic models for complex metabolic networks.


Assuntos
Redes e Vias Metabólicas , Modelos Biológicos , Fenômenos Biomecânicos , Simulação por Computador , Eritrócitos/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Cinética , Ácido Láctico/metabolismo , Oxirredução , Oxigênio/metabolismo , Purinas/metabolismo , Fatores de Tempo
5.
J Theor Biol ; 252(3): 456-64, 2008 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-17988690

RESUMO

Protein-protein interactions are operative at almost every level of cell structure and function as, for example, formation of sub-cellular organelles, packaging of chromatin, muscle contraction, signal transduction, and regulation of gene expression. Public databases of reported protein-protein interactions comprise hundreds of thousands interactions, and this number is steadily growing. Elucidating the implications of protein-protein interactions for the regulation of the underlying cellular or extra-cellular reaction network remains a great challenge for computational biochemistry. In this work, we have undertaken a systematic and comprehensive computational analysis of reported enzyme-enzyme interactions in the metabolic networks of the model organisms Escherichia coli and Saccharomyces cerevisiae. We grouped all enzyme pairs according to the topological distance that the catalyzed reactions have in the metabolic network and performed a statistical analysis of reported enzyme-enzyme interactions within these groups. We found a higher frequency of reported enzyme-enzyme interactions within the group of enzymes catalyzing reactions that are adjacent in the network, i.e. sharing at least one metabolite. As some of these interacting enzymes have already been implicated in metabolic channeling our analysis may provide a useful screening for candidates of this phenomenon. To check for a possible regulatory role of interactions between enzymes catalyzing non-neighboring reactions, we determined potentially regulatory enzymes using connectivity in the network and absolute change of Gibbs free energy. Indeed a higher portion of reported interactions pertain to such potentially regulatory enzymes.


Assuntos
Biologia Computacional/métodos , Enzimas/metabolismo , Redes e Vias Metabólicas/fisiologia , Proteínas/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Catálise , Bases de Dados de Proteínas , Enzimas/fisiologia , Escherichia coli/metabolismo , Ligação Proteica/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Bioinformatics ; 23(7): 859-65, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17456608

RESUMO

MOTIVATION: Large amounts of protein and domain interaction data are being produced by experimental high-throughput techniques and computational approaches. To gain insight into the value of the provided data, we used our new similarity measure based on the Gene Ontology (GO) to evaluate the molecular functions and biological processes of interacting proteins or domains. The applied measure particularly addresses the frequent annotation of proteins or domains with multiple GO terms. RESULTS: Using our similarity measure, we compare predicted domain-domain and human protein-protein interactions with experimentally derived interactions. The results show that our similarity measure is of significant benefit in quality assessment and confidence ranking of domain and protein networks. We also derive useful confidence score thresholds for dividing domain interaction predictions into subsets of low and high confidence. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Modelos Biológicos , Modelos Químicos , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína/métodos , Transdução de Sinais/fisiologia , Sítios de Ligação , Simulação por Computador , Humanos , Ligação Proteica , Estrutura Terciária de Proteína
7.
Proc Natl Acad Sci U S A ; 104(13): 5495-500, 2007 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-17372197

RESUMO

Alternative premessenger RNA splicing enables genes to generate more than one gene product. Splicing events that occur within protein coding regions have the potential to alter the biological function of the expressed protein and even to create new protein functions. Alternative splicing has been suggested as one explanation for the discrepancy between the number of human genes and functional complexity. Here, we carry out a detailed study of the alternatively spliced gene products annotated in the ENCODE pilot project. We find that alternative splicing in human genes is more frequent than has commonly been suggested, and we demonstrate that many of the potential alternative gene products will have markedly different structure and function from their constitutively spliced counterparts. For the vast majority of these alternative isoforms, little evidence exists to suggest they have a role as functional proteins, and it seems unlikely that the spectrum of conventional enzymatic or structural functions can be substantially extended through alternative splicing.


Assuntos
Processamento Alternativo , Precursores de RNA , Bases de Dados Genéticas , Regulação da Expressão Gênica , Genoma Humano , Humanos , Internet , Modelos Moleculares , Conformação Proteica , Isoformas de Proteínas , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Proteínas/química , Splicing de RNA
8.
Genome Inform ; 18: 162-72, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18546484

RESUMO

Protein-protein interactions are operative at almost every level of cell function. In the recent years high-throughput methods have been increasingly used to uncover protein-protein interactions at genome scale resulting in interaction maps for entire organisms. However, biochemical implications of high-throughput interactions are not always obvious. The question arises whether all interactions detected by in vitro experiments also play a functional role in the living cell. In this work we systematically analyze high-throughput protein-protein interactions stored in public databases in the context of metabolic networks. Classifying reaction pairs according to their topological distance revealed a significantly higher frequency of enzyme-enzyme interactions for directly neighbored reactions (distance = 1). To determine possible functional implications for these interactions we examined randomized networks using original enzyme interactions as well as randomly generated interaction data. A functional relevance of enzyme-enzyme interactions could be demonstrated for those reactions that exhibit low connectivity. As this is a characteristic of enzyme pairs in metabolic channeling we systematically searched the literature and indeed recovered a certain fraction of enzyme pairs that has already been implicated in metabolic channeling. However, a substantial number of enzyme pairs uncovered by our large-scale analysis remains that up to now has neither been functionally nor structurally classified and therefore present novel candidates of the metabolic channeling concept.


Assuntos
Biologia Computacional , Enzimas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Bases de Dados de Proteínas , Ligação Proteica
9.
Bioinformatics ; 21 Suppl 2: ii220-1, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16204107

RESUMO

UNLABELLED: The application of novel experimental techniques has generated large networks of protein-protein interactions. Frequently, important information on the structure and cellular function of protein-protein interactions can be gained from the domains of interacting proteins. We have designed a Cytoscape plugin that decomposes interacting proteins into their respective domains and computes a putative network of corresponding domain-domain interactions. To this end, the network graph of proteins has been extended by additional node and edge types for domain interactions, including different node and edge shapes and coloring schemes used for visualization. An additional plugin provides supplementary web links to Internet resources on domain function and structure. AVAILABILITY: Both Cytoscape plugins can be downloaded from http://www.cytoscape.org


Assuntos
Algoritmos , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína/métodos , Transdução de Sinais/fisiologia , Software , Sequência de Aminoácidos , Sítios de Ligação , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...