Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 218(4): 1182-1199, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30674582

RESUMO

Spindle checkpoint signaling is initiated by recruitment of the kinase MPS1 to unattached kinetochores during mitosis. We show that CDK1-CCNB1 and a counteracting phosphatase PP2A-B55 regulate the engagement of human MPS1 with unattached kinetochores by controlling the phosphorylation status of S281 in the kinetochore-binding domain. This regulation is essential for checkpoint signaling, since MPS1S281A is not recruited to unattached kinetochores and fails to support the recruitment of other checkpoint proteins. Directly tethering MPS1S281A to the kinetochore protein Mis12 bypasses this regulation and hence the requirement for S281 phosphorylation in checkpoint signaling. At the metaphase-anaphase transition, MPS1 S281 dephosphorylation is delayed because PP2A-B55 is negatively regulated by CDK1-CCNB1 and only becomes fully active once CCNB1 concentration falls below a characteristic threshold. This mechanism prolongs the checkpoint-responsive period when MPS1 can localize to kinetochores and enables a response to late-stage spindle defects. By acting together, CDK1-CCNB1 and PP2A-B55 thus create a spindle checkpoint-permissive state and ensure the fidelity of mitosis.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/enzimologia , Ciclina B1/metabolismo , Cinetocoros/enzimologia , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Ciclina B1/genética , Células HEK293 , Células HeLa , Humanos , Fosforilação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Epitélio Pigmentado da Retina/enzimologia , Transdução de Sinais , Fatores de Tempo
2.
Cell Cycle ; 16(20): 1885-1892, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28902568

RESUMO

The transitions between phases of the cell cycle have evolved to be robust and switch-like, which ensures temporal separation of DNA replication, sister chromatid separation, and cell division. Mathematical models describing the biochemical interaction networks of cell cycle regulators attribute these properties to underlying bistable switches, which inherently generate robust, switch-like, and irreversible transitions between states. We have recently presented new mathematical models for two control systems that regulate crucial transitions in the cell cycle: mitotic entry and exit, 1 and the mitotic checkpoint. 2 Each of the two control systems is characterized by two interlinked bistable switches. In the case of mitotic checkpoint control, these switches are mutually activating, whereas in the case of the mitotic entry/exit network, the switches are mutually inhibiting. In this Perspective we describe the qualitative features of these regulatory motifs and show that having two interlinked bistable mechanisms further enhances robustness and irreversibility. We speculate that these network motifs also underlie other cell cycle transitions and cellular transitions between distinct biochemical states.


Assuntos
Mitose , Animais , Proteína Quinase CDC2/metabolismo , Ciclina B/metabolismo , Humanos , Pontos de Checagem da Fase M do Ciclo Celular , Modelos Biológicos
3.
BMC Genomics ; 17(1): 917, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27842490

RESUMO

BACKGROUND: The bacterial CRISPR system is fast becoming the most popular genetic and epigenetic engineering tool due to its universal applicability and adaptability. The desire to deploy CRISPR-based methods in a large variety of species and contexts has created an urgent need for the development of easy, time- and cost-effective methods enabling large-scale screening approaches. RESULTS: Here we describe CORALINA (comprehensive gRNA library generation through controlled nuclease activity), a method for the generation of comprehensive gRNA libraries for CRISPR-based screens. CORALINA gRNA libraries can be derived from any source of DNA without the need of complex oligonucleotide synthesis. We show the utility of CORALINA for human and mouse genomic DNA, its reproducibility in covering the most relevant genomic features including regulatory, coding and non-coding sequences and confirm the functionality of CORALINA generated gRNAs. CONCLUSIONS: The simplicity and cost-effectiveness make CORALINA suitable for any experimental system. The unprecedented sequence complexities obtainable with CORALINA libraries are a necessary pre-requisite for less biased large scale genomic and epigenomic screens.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Biblioteca Gênica , Engenharia Genética , Genômica , RNA Guia de Cinetoplastídeos , Animais , Engenharia Genética/métodos , Genômica/métodos , Humanos , Camundongos , Reprodutibilidade dos Testes
4.
J Cell Biol ; 214(5): 539-54, 2016 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-27551054

RESUMO

PP2A-B55 is one of the major phosphatases regulating cell division. Despite its importance for temporal control during mitotic exit, how B55 substrates are recognized and differentially dephosphorylated is unclear. Using phosphoproteomics combined with kinetic modeling to extract B55-dependent rate constants, we have systematically identified B55 substrates and assigned their temporal order in mitotic exit. These substrates share a bipartite polybasic recognition determinant (BPR) flanking a Cdk1 phosphorylation site. Experiments and modeling show that dephosphorylation rate is encoded into B55 substrates, including its inhibitor ENSA, by cooperative action of basic residues within the BPR. A complementary acidic surface on B55 decodes this signal, supporting a cooperative electrostatic mechanism for substrate selection. A further level of specificity is encoded into B55 substrates because B55 displays selectivity for phosphothreonine. These simple biochemical properties, combined with feedback control of B55 activity by the phosphoserine-containing substrate/inhibitor ENSA, can help explain the temporal sequence of events during exit from mitosis.


Assuntos
Mitose , Proteína Fosfatase 2/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoácidos/metabolismo , Anáfase/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , Cinética , Mitose/efeitos dos fármacos , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 2/química , Subunidades Proteicas/metabolismo , Eletricidade Estática , Especificidade por Substrato/efeitos dos fármacos , Fatores de Tempo
5.
Cell Rep ; 13(3): 469-478, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26456822

RESUMO

Sister chromatid cohesion, mediated by the cohesin complex, is essential for faithful mitosis. Nevertheless, evidence suggests that the surveillance mechanism that governs mitotic fidelity, the spindle assembly checkpoint (SAC), is not robust enough to halt cell division when cohesion loss occurs prematurely. The mechanism behind this poor response is not properly understood. Using developing Drosophila brains, we show that full sister chromatid separation elicits a weak checkpoint response resulting in abnormal mitotic exit after a short delay. Quantitative live-cell imaging approaches combined with mathematical modeling indicate that weak SAC activation upon cohesion loss is caused by weak signal generation. This is further attenuated by several feedback loops in the mitotic signaling network. We propose that multiple feedback loops involving cyclin-dependent kinase 1 (Cdk1) gradually impair error-correction efficiency and accelerate mitotic exit upon premature loss of cohesion. Our findings explain how cohesion defects may escape SAC surveillance.


Assuntos
Cromátides/genética , Cromossomos de Insetos/genética , Retroalimentação Fisiológica , Pontos de Checagem da Fase M do Ciclo Celular , Fuso Acromático/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/metabolismo , Drosophila/genética , Proteínas de Drosophila , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...