Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inhal Toxicol ; 16 Suppl 1: 115-29, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15204800

RESUMO

This study investigated the surface chemistry of urban fine particles (PM(2.5)), and quantified the adsorbed and desorbed species after exposure to bronchoalveolar lavage fluid (BALF). Urban background and roadside PM(2.5) samples of different mass concentration and total weight were collected in triplicate in the South Bronx region of New York City. Simultaneously, the concentrations of other atmospheric pollutants (CO, NO(x), SO(2), O(3), elemental carbon) were measured, and weather conditions were recorded. The collected PM(2.5) samples underwent one of three treatments: no treatment, treatment in vitro with BALF, or treatment in a saline solution (control). The surfaces of untreated, saline-treated, and BALF-treated PM(2.5) samples were analyzed using x-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). These results were then compared with ambient air pollutant concentrations, weather variables, selected BALF characteristics, and results from a previous London study conducted using identical preparation methods by XPS analysis only. Both XPS and ToF-SIMS detected PM(2.5) surface species and observed changes in surface concentrations after treatment. XPS analysis showed the surface of untreated urban PM(2.5) consisted of 79 to 87% carbon and 10 to 16% oxygen with smaller contributions of N, S, Si, and P in the samples from both background and roadside locations. A wider variety of other inorganic and organic species (including metals, aliphatic and aromatic hydrocarbons, and nitrogen-containing molecules) was detected with ToF-SIMS. Surface characteristics of particles from the roadside and background sites were very similar, except for higher (p <.05) nitrate concentrations at the roadside, which were attributable to higher roadside NO(x) concentrations. Comparable species and quantities were identified in a previous study of London PM(2.5), where PM(2.5) surface chemistry differed considerably depending on the source, particularly in surface concentrations of oxygen and trace species. After treatment with BALF the N-C signal detected by XPS analysis increased in the average by 372 +/- 203%, indicating significant surface adsorption of protein or other N-containing biomolecules. Lower (nonsignificant) N-C signals were observed for smoker BALF, compared to nonsmoker BALF. ToF-SIMS data confirmed protein adsorption after BALF treatment--smoker BALF resulted in lower levels of adsorbed proteins compared to nonsmoker BALF. ToF-SIMS also indicated an adsorption of phospholipid on the treated PM(2.5) surfaces. The primary phospholipid in BALF is dipalmitoylphospatidylcholine (DPPC), although positive identification was not possible due to low concentrations at the PM(2.5) surface. Oxygen content of PM(2.5) surfaces was the most significant determinant of both N-C and phospholipid adsorption. The XPS signal of the soluble species NH(+)(4), NO(2-)(3), Si, and S decreased in both saline- and BALF-treated samples, showing that these species may be bioavailable in the lung. Similarly, ToF-SIMS analysis suggests the bioavailability of Na(+) and Al(+) as well as NH(+)(4) and Si(+).


Assuntos
Poluentes Atmosféricos/química , Líquido da Lavagem Broncoalveolar/química , Propriedades de Superfície , Adsorção , Poluentes Atmosféricos/análise , Disponibilidade Biológica , Carbono/análise , Carbono/química , Inglaterra , Humanos , Cidade de Nova Iorque , Nitrogênio/análise , Nitrogênio/química , Oxigênio/análise , Oxigênio/química , Tamanho da Partícula , Espectrometria de Massa de Íon Secundário/métodos , Espectrometria por Raios X/métodos , Poluição por Fumaça de Tabaco/análise , Saúde da População Urbana
2.
Nature ; 415(6873): 770-4, 2002 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-11845203

RESUMO

Stainless steels are used in countless diverse applications for their corrosion resistance. Although they have extremely good general resistance, they are nevertheless susceptible to pitting corrosion. This localized dissolution of an oxide-covered metal in specific aggressive environments is one of the most common and catastrophic causes of failure of metallic structures. The pitting process has been described as random, sporadic and stochastic and the prediction of the time and location of events remains extremely difficult. Many contested models of pitting corrosion exist, but one undisputed aspect is that manganese sulphide inclusions play a critical role. Indeed, the vast majority of pitting events are found to occur at, or adjacent to, such second-phase particles. Chemical changes in and around sulphide inclusions have been postulated as a mechanism for pit initiation but such variations have never been measured. Here we use nanometre-scale secondary ion mass spectroscopy to demonstrate a significant reduction in the Cr:Fe ratio of the steel matrix around MnS particles. These chromium-depleted zones are susceptible to high-rate dissolution that 'triggers' pitting. The implications of these results are that materials processing conditions control the likelihood of corrosion failures, and these data provide a basis for optimizing such conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...