Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
EJNMMI Phys ; 10(1): 77, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38049611

RESUMO

BACKGROUND: Increased pulmonary [Formula: see text]F-FDG metabolism in patients with idiopathic pulmonary fibrosis, and other forms of diffuse parenchymal lung disease, can predict measurements of health and lung physiology. To improve PET quantification, voxel-wise air fractions (AF) determined from CT can be used to correct for variable air content in lung PET/CT. However, resolution mismatches between PET and CT can cause artefacts in the AF-corrected image. METHODS: Three methodologies for determining the optimal kernel to smooth the CT are compared with noiseless simulations and non-TOF MLEM reconstructions of a patient-realistic digital phantom: (i) the point source insertion-and-subtraction method, [Formula: see text]; (ii) AF-correcting with varyingly smoothed CT to achieve the lowest RMSE with respect to the ground truth (GT) AF-corrected volume of interest (VOI), [Formula: see text]; iii) smoothing the GT image to match the reconstruction within the VOI, [Formula: see text]. The methods were evaluated both using VOI-specific kernels, and a single global kernel optimised for the six VOIs combined. Furthermore, [Formula: see text] was implemented on thorax phantom data measured on two clinical PET/CT scanners with various reconstruction protocols. RESULTS: The simulations demonstrated that at [Formula: see text] iterations (200 i), the kernel width was dependent on iteration number and VOI position in the lung. The [Formula: see text] method estimated a lower, more uniform, kernel width in all parts of the lung investigated. However, all three methods resulted in approximately equivalent AF-corrected VOI RMSEs (<10%) at [Formula: see text]200i. The insensitivity of AF-corrected quantification to kernel width suggests that a single global kernel could be used. For all three methodologies, the computed global kernel resulted in an AF-corrected lung RMSE <10%  at [Formula: see text]200i, while larger lung RMSEs were observed for the VOI-specific kernels. The global kernel approach was then employed with the [Formula: see text] method on measured data. The optimally smoothed GT emission matched the reconstructed image well, both within the VOI and the lung background. VOI RMSE was <10%, pre-AFC, for all reconstructions investigated. CONCLUSIONS: Simulations for non-TOF PET indicated that around 200i were needed to approach image resolution stability in the lung. In addition, at this iteration number, a single global kernel, determined from several VOIs, for AFC, performed well over the whole lung. The [Formula: see text] method has the potential to be used to determine the kernel for AFC from scans of phantoms on clinical scanners.

2.
EJNMMI Phys ; 10(1): 30, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37133766

RESUMO

PURPOSE: Nuclear medicine imaging modalities like computed tomography (CT), single photon emission CT (SPECT) and positron emission tomography (PET) are employed in the field of theranostics to estimate and plan the dose delivered to tumors and the surrounding tissues and to monitor the effect of the therapy. However, therapeutic radionuclides often provide poor images, which translate to inaccurate treatment planning and inadequate monitoring images. Multimodality information can be exploited in the reconstruction to enhance image quality. Triple modality PET/SPECT/CT scanners are particularly useful in this context due to the easier registration process between images. In this study, we propose to include PET, SPECT and CT information in the reconstruction of PET data. The method is applied to Yttrium-90 ([Formula: see text]Y) data. METHODS: Data from a NEMA phantom filled with [Formula: see text]Y were used for validation. PET, SPECT and CT data from 10 patients treated with Selective Internal Radiation Therapy (SIRT) were used. Different combinations of prior images using the Hybrid kernelized expectation maximization were investigated in terms of VOI activity and noise suppression. RESULTS: Our results show that triple modality PET reconstruction provides significantly higher uptake when compared to the method used as standard in the hospital and OSEM. In particular, using CT-guided SPECT images, as guiding information in the PET reconstruction significantly increases uptake quantification on tumoral lesions. CONCLUSION: This work proposes the first triple modality reconstruction method and demonstrates up to 69% lesion uptake increase over standard methods with SIRT [Formula: see text]Y patient data. Promising results are expected for other radionuclide combination used in theranostic applications using PET and SPECT.

3.
IEEE Trans Med Imaging ; 42(1): 29-41, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36044488

RESUMO

Penalised PET image reconstruction algorithms are often accelerated during early iterations with the use of subsets. However, these methods may exhibit limit cycle behaviour at later iterations due to variations between subsets. Desirable converged images can be achieved for a subclass of these algorithms via the implementation of a relaxed step size sequence, but the heuristic selection of parameters will impact the quality of the image sequence and algorithm convergence rates. In this work, we demonstrate the adaption and application of a class of stochastic variance reduction gradient algorithms for PET image reconstruction using the relative difference penalty and numerically compare convergence performance to BSREM. The two investigated algorithms are: SAGA and SVRG. These algorithms require the retention in memory of recently computed subset gradients, which are utilised in subsequent updates. We present several numerical studies based on Monte Carlo simulated data and a patient data set for fully 3D PET acquisitions. The impact of the number of subsets, different preconditioners and step size methods on the convergence of regions of interest values within the reconstructed images is explored. We observe that when using constant preconditioning, SAGA and SVRG demonstrate reduced variations in voxel values between subsequent updates and are less reliant on step size hyper-parameter selection than BSREM reconstructions. Furthermore, SAGA and SVRG can converge significantly faster to the penalised maximum likelihood solution than BSREM, particularly in low count data.


Assuntos
Algoritmos , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas
4.
EJNMMI Phys ; 9(1): 59, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064882

RESUMO

BACKGROUND: Currently, there is no consensus on the optimal partial volume correction (PVC) algorithm for oncology imaging. Several existing PVC methods require knowledge of the reconstructed resolution, usually as the point spread function (PSF)-often assumed to be spatially invariant. However, this is not the case for SPECT imaging. This work aimed to assess the accuracy of SPECT quantification when PVC is applied using a case-specific PSF. METHODS: Simulations of SPECT [Formula: see text]Tc imaging were performed for a range of activity distributions, including those replicating typical clinical oncology studies. Gaussian PSFs in reconstructed images were estimated using perturbation with a small point source. Estimates of the PSF were made in situations which could be encountered in a patient study, including; different positions in the field of view, different lesion shapes, sizes and contrasts, noise-free and noisy data. Ground truth images were convolved with the perturbation-estimated PSF, and with a PSF reflecting the resolution at the centre of the field of view. Both were compared with reconstructed images and the root-mean-square error calculated to assess the accuracy of the estimated PSF. PVC was applied using Single Target Correction, incorporating the perturbation-estimated PSF. Corrected regional mean values were assessed for quantitative accuracy. RESULTS: Perturbation-estimated PSF values demonstrated dependence on the position in the Field of View and the number of OSEM iterations. A lower root mean squared error was observed when convolution of the ground truth image was performed with the perturbation-estimated PSF, compared with convolution using a different PSF. Regional mean values following PVC using the perturbation-estimated PSF were more accurate than uncorrected data, or data corrected with PVC using an unsuitable PSF. This was the case for both simple and anthropomorphic phantoms. For the simple phantom, regional mean values were within 0.7% of the ground truth values. Accuracy improved after 5 or more OSEM iterations (10 subsets). For the anthropomorphic phantoms, post-correction regional mean values were within 1.6% of the ground truth values for noise-free uniform lesions. CONCLUSION: Perturbation using a simulated point source could potentially improve quantitative SPECT accuracy via the application of PVC, provided that sufficient reconstruction iterations are used.

5.
EJNMMI Phys ; 9(1): 25, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35377085

RESUMO

BACKGROUND: Selective internal radiation therapy with Yttrium-90 microspheres is an effective therapy for liver cancer and liver metastases. Yttrium-90 is mainly a high-energy beta particle emitter. These beta particles emit Bremsstrahlung radiation during their interaction with tissue making post-therapy imaging of the radioactivity distribution feasible. Nevertheless, image quality and quantification is difficult due to the continuous energy spectrum which makes resolution modelling, attenuation and scatter estimation challenging and therefore the dosimetry quantification is inaccurate. As a consequence a reconstruction algorithm able to improve resolution could be beneficial. METHODS: In this study, the hybrid kernelised expectation maximisation (HKEM) is used to improve resolution and contrast and reduce noise, in addition a modified HKEM called frozen HKEM (FHKEM) is investigated to further reduce noise. The iterative part of the FHKEM kernel was frozen at the 72nd sub-iteration. When using ordered subsets algorithms the data is divided in smaller subsets and the smallest algorithm iterative step is called sub-iteration. A NEMA phantom with spherical inserts was used for the optimisation and validation of the algorithm, and data from 5 patients treated with Selective internal radiation therapy were used as proof of clinical relevance of the method. RESULTS: The results suggest a maximum improvement of 56% for region of interest mean recovery coefficient at fixed coefficient of variation and better identification of the hot volumes in the NEMA phantom. Similar improvements were achieved with patient data, showing 47% mean value improvement over the gold standard used in hospitals. CONCLUSIONS: Such quantitative improvements could facilitate improved dosimetry calculations with SPECT when treating patients with Selective internal radiation therapy, as well as provide a more visible position of the cancerous lesions in the liver.

7.
Neuroimage ; 237: 118194, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34023451

RESUMO

Blood-based kinetic analysis of PET data relies on an accurate estimate of the arterial plasma input function (PIF). An alternative to invasive measurements from arterial sampling is an image-derived input function (IDIF). However, an IDIF provides the whole blood radioactivity concentration, rather than the required free tracer radioactivity concentration in plasma. To estimate the tracer PIF, we corrected an IDIF from the carotid artery with estimates of plasma parent fraction (PF) and plasma-to-whole blood (PWB) ratio obtained from five venous samples. We compared the combined IDIF+venous approach to gold standard data from arterial sampling in 10 healthy volunteers undergoing [18F]GE-179 brain PET imaging of the NMDA receptor. Arterial and venous PF and PWB ratio estimates determined from 7 patients with traumatic brain injury (TBI) were also compared to assess the potential effect of medication. There was high agreement between areas under the curves of the estimates of PF (r = 0.99, p<0.001), PWB ratio (r = 0.93, p<0.001), and the PIF (r = 0.92, p<0.001) as well as total distribution volume (VT) in 11 regions across the brain (r = 0.95, p<0.001). IDIF+venous VT had a mean bias of -1.7% and a comparable regional coefficient of variation (arterial: 21.3 ± 2.5%, IDIF+venous: 21.5 ± 2.0%). Simplification of the IDIF+venous method to use only one venous sample provided less accurate VT estimates (mean bias 9.9%; r = 0.71, p<0.001). A version of the method that avoids the need for blood sampling by combining the IDIF with population-based PF and PWB ratio estimates systematically underestimated VT (mean bias -20.9%), and produced VT estimates with a poor correlation to those obtained using arterial data (r = 0.45, p<0.001). Arterial and venous blood data from 7 TBI patients showed high correlations for PF (r = 0.92, p = 0.003) and PWB ratio (r = 0.93, p = 0.003). In conclusion, the IDIF+venous method with five venous samples provides a viable alternative to arterial sampling for quantification of [18F]GE-179 VT.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Neuroimagem/normas , Tomografia por Emissão de Pósitrons/normas , Compostos Radiofarmacêuticos/farmacocinética , Receptores de N-Metil-D-Aspartato/metabolismo , Adulto , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Reprodutibilidade dos Testes , Veias
8.
Lancet Neurol ; 19(11): 951-962, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33098804

RESUMO

Various biomarkers are available to support the diagnosis of neurodegenerative diseases in clinical and research settings. Among the molecular imaging biomarkers, amyloid-PET, which assesses brain amyloid deposition, and 18F-fluorodeoxyglucose (18F-FDG) PET, which assesses glucose metabolism, provide valuable and complementary information. However, uncertainty remains regarding the optimal timepoint, combination, and an order in which these PET biomarkers should be used in diagnostic evaluations because conclusive evidence is missing. Following an expert panel discussion, we reached an agreement on the specific use of the individual biomarkers, based on available evidence and clinical expertise. We propose a diagnostic algorithm with optimal timepoints for these PET biomarkers, also taking into account evidence from other biomarkers, for early and differential diagnosis of neurodegenerative diseases that can lead to dementia. We propose three main diagnostic pathways with distinct biomarker sequences, in which amyloid-PET and 18F-FDG-PET are placed at different positions in the order of diagnostic evaluations, depending on clinical presentation. We hope that this algorithm can support diagnostic decision making in specialist clinical settings with access to these biomarkers and might stimulate further research towards optimal diagnostic strategies.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Demência Vascular/metabolismo , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons/métodos , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Demência Vascular/diagnóstico por imagem , Demência Vascular/psicologia , Diagnóstico Diferencial , Humanos , Masculino
9.
J Nucl Med ; 61(12): 1701-1707, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32948678

RESUMO

PET with 18F-FDG has been increasingly applied, predominantly in the research setting, to study drug effects and pulmonary biology and to monitor disease progression and treatment outcomes in lung diseases that interfere with gas exchange through alterations of the pulmonary parenchyma, airways, or vasculature. To date, however, there are no widely accepted standard acquisition protocols or imaging data analysis methods for pulmonary 18F-FDG PET/CT in these diseases, resulting in disparate approaches. Hence, comparison of data across the literature is challenging. To help harmonize the acquisition and analysis and promote reproducibility, we collated details of acquisition protocols and analysis methods from 7 PET centers. From this information and our discussions, we reached the consensus recommendations given here on patient preparation, choice of dynamic versus static imaging, image reconstruction, and image analysis reporting.


Assuntos
Consenso , Fluordesoxiglucose F18 , Pneumopatias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Guias de Prática Clínica como Assunto , Fluordesoxiglucose F18/administração & dosagem , Humanos , Processamento de Imagem Assistida por Computador , Injeções , Pneumopatias/fisiopatologia , Posicionamento do Paciente , Respiração
10.
Phys Med Biol ; 65(8): 085009, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32101801

RESUMO

While the pursuit of better time resolution in positron emission tomography (PET) is rapidly evolving, little work has been performed on time of flight (TOF) image quality at high time resolution in the presence of modelling inconsistencies. This works focuses on the effect of using the wrong attenuation map in the system model, causing perturbations in the reconstructed radioactivity image. Previous work has usually considered the effects to be local to the area where there is attenuation mismatch, and has shown that the quantification errors in this area tend to reduce with improved time resolution. This publication shows however that errors in the PET image at a distance from the mismatch increase with time resolution. The errors depend on the reconstruction algorithm used. We quantify the errors in the hypothetical case of perfect time resolution for maximum likelihood reconstructions. In addition, we perform reconstructions on simulated and patient data. In particular, for respiratory-gated reconstructions from a wrong attenuation map, increased errors are observed with improved time resolutions in areas close to the lungs (e.g. from 13.3% in non-TOF to up to 20.9% at 200 ps in the left ventricle).


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Simulação por Computador , Humanos , Neoplasias Pulmonares/patologia
11.
IEEE Trans Med Imaging ; 39(1): 11-22, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31144629

RESUMO

In this study, we explore the use of a spatially-variant penalty strength in penalized image reconstruction using anatomical priors to reduce the dependence of lesion contrast on surrounding activity and lesion location. This work builds on a previous method to make the local perturbation response (LPR) approximately spatially invariant. While the dependence of lesion contrast on the local properties introduced by the anatomical penalty is intentional, the method aims to reduce the influence from surroundings lying along the lines of response (LORs) but not in the penalty neighborhood structure. The method is evaluated using simulated data, assuming that the anatomical information is absent or well-aligned with the corresponding activity images. Since the parallel level sets (PLS) penalty is convex and has shown promising results in the literature, it is chosen as the representative anatomical penalty and incorporated into the previously proposed preconditioned algorithm (L-BFGS-B-PC) for achieving good image quality and fast convergence rate. A 2D disc phantom with a feature at the center and a 3D XCAT thorax phantom with lesions inserted in different slices are used to study how surrounding activity and lesion location affect the visual appearance and quantitative consistency. A bias and noise analysis is also performed with the 2D disc phantom. The consistency of the algorithm convergence rate with respect to different data noise and background levels is also investigated using the XCAT phantom. Finally, an example of reconstruction for a patient dataset with inserted pseudo lesions is used as a demonstration in a clinical context. We show that applying the spatially-variant penalization with PLS can reduce the dependence of the lesion contrast on the surrounding activity and lesion location. It does not affect the bias and noise trade-off curves for matched local resolution. Moreover, when using the proposed penalization, significant improvement in algorithm convergence rate and convergence consistency is observed.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Algoritmos , Humanos , Fígado/diagnóstico por imagem , Imagens de Fantasmas , Tórax/diagnóstico por imagem
12.
IEEE Trans Med Imaging ; 39(1): 75-86, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31170066

RESUMO

Standard positron emission tomography (PET) reconstruction techniques are based on maximum-likelihood (ML) optimization methods, such as the maximum-likelihood expectation-maximization (MLEM) algorithm and its variations. Most methodologies rely on a positivity constraint on the activity distribution image. Although this constraint is meaningful from a physical point of view, it can be a source of bias for low-count/high-background PET, which can compromise accurate quantification. Existing methods that allow for negative values in the estimated image usually utilize a modified log-likelihood, and therefore break the data statistics. In this paper, we propose to incorporate the positivity constraint on the projections only, by approximating the (penalized) log-likelihood function by an adequate sequence of objective functions that are easily maximized without constraint. This sequence is constructed such that there is hypo-convergence (a type of convergence that allows the convergence of the maximizers under some conditions) to the original log-likelihood, hence allowing us to achieve maximization with positivity constraint on the projections using simple settings. A complete proof of convergence under weak assumptions is given. We provide results of experiments on simulated data where we compare our methodology with the alternative direction method of multipliers (ADMM) method, showing that our algorithm converges to a maximizer, which stays in the desired feasibility set, with faster convergence than ADMM. We also show that this approach reduces the bias, as compared with MLEM images, in necrotic tumors-which are characterized by cold regions surrounded by hot structures-while reconstructing similar activity values in hot regions.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Algoritmos , Humanos , Pulmão/diagnóstico por imagem , Imagens de Fantasmas
13.
Med Phys ; 47(2): 790-811, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31794071

RESUMO

Positron emission tomography/magnetic resonance imaging (PET/MRI) potentially offers several advantages over positron emission tomography/computed tomography (PET/CT), for example, no CT radiation dose and soft tissue images from MR acquired at the same time as the PET. However, obtaining accurate linear attenuation correction (LAC) factors for the lung remains difficult in PET/MRI. LACs depend on electron density and in the lung, these vary significantly both within an individual and from person to person. Current commercial practice is to use a single-valued population-based lung LAC, and better estimation is needed to improve quantification. Given the under-appreciation of lung attenuation estimation as an issue, the inaccuracy of PET quantification due to the use of single-valued lung LACs, the unique challenges of lung estimation, and the emerging status of PET/MRI scanners in lung disease, a review is timely. This paper highlights past and present methods, categorizing them into segmentation, atlas/mapping, and emission-based schemes. Potential strategies for future developments are also presented.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Humanos , Pulmão/fisiologia , Respiração
14.
Phys Med Biol ; 64(20): 205010, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31539891

RESUMO

The impact of positron range on PET image reconstruction has often been investigated as a blurring effect that can be partly corrected by adding an element to the PET system matrix in the reconstruction, usually based on a Gaussian kernel constructed from the attenuation values. However, the physics involved in PET is more complex. In regions where density does not vary, positron range indeed involves mainly blurring. However, in more heterogeneous media it can cause other effects. This work focuses on positron range in the lungs and its impact on quantification, especially in the case of pathologies such as cancer or pulmonary fibrosis, for which the lungs have localised varying density. Using Monte Carlo simulations, we evaluate the effects of positron range for multiple radionuclides (18F, 15O, 68Ga, 89Zr, 82Rb, 64Cu and 124I) as, for novel radiotracers, the choice of the labelling radionuclide is important. The results demonstrate quantification biases in highly heterogeneous media, where the measured uptake of high-density regions can be increased by the neighbouring radioactivity from regions of lower density, with the effect more noticeable for radionuclides with high-energy positron emission. When the low-density regions are considered to have less radioactive uptake (e.g. due to the presence of air), the effect is less severe.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Pneumopatias/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismo , Elétrons , Humanos , Pulmão/metabolismo , Pneumopatias/metabolismo , Pneumopatias/patologia , Método de Monte Carlo
15.
J Cereb Blood Flow Metab ; 39(12): 2419-2432, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30182792

RESUMO

Pharmacokinetic modelling on dynamic positron emission tomography (PET) data is a quantitative technique. However, the long acquisition time is prohibitive for routine clinical use. Instead, the semi-quantitative standardised uptake value ratio (SUVR) from a shorter static acquisition is used, despite its sensitivity to blood flow confounding longitudinal analysis. A method has been proposed to reduce the dynamic acquisition time for quantification by incorporating cerebral blood flow (CBF) information from arterial spin labelling (ASL) magnetic resonance imaging (MRI) into the pharmacokinetic modelling. In this work, we optimise and validate this framework for a study of ageing and preclinical Alzheimer's disease. This methodology adapts the simplified reference tissue model (SRTM) for a reduced acquisition time (RT-SRTM) and is applied to [18F]-florbetapir PET data for amyloid-ß quantification. Evaluation shows that the optimised RT-SRTM can achieve amyloid burden estimation from a 30-min PET/MR acquisition which is comparable with the gold standard SRTM applied to 60 min of PET data. Conversely, SUVR showed a significantly higher error and bias, and a statistically significant correlation with tracer delivery due to the influence of blood flow. The optimised RT-SRTM produced amyloid burden estimates which were uncorrelated with tracer delivery indicating its suitability for longitudinal studies.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina , Circulação Cerebrovascular , Etilenoglicóis , Modelos Cardiovasculares , Tomografia por Emissão de Pósitrons , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Compostos de Anilina/administração & dosagem , Compostos de Anilina/farmacocinética , Etilenoglicóis/administração & dosagem , Etilenoglicóis/farmacocinética , Feminino , Humanos , Masculino , Estudo de Prova de Conceito
16.
EJNMMI Res ; 8(1): 58, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29971517

RESUMO

BACKGROUND: Kinetic analysis of dynamic PET data requires an accurate knowledge of available PET tracer concentration within blood plasma over time, known as the arterial input function (AIF). The gold standard method used to measure the AIF requires serial arterial blood sampling over the course of the PET scan, which is an invasive procedure and makes this method less practical in clinical settings. Traditional image-derived methods are limited to specific tracers and are not accurate if metabolites are present in the plasma. RESULTS: In this work, we utilise an image-derived whole blood curve measurement to reduce the computational complexity of the simultaneous estimation method (SIME), which is capable of estimating the AIF directly from tissue time activity curves (TACs). This method was applied to data obtained from a serotonin receptor study (11C-SB207145) and estimated parameter results are compared to results obtained using the original SIME and gold standard AIFs derived from arterial samples. Reproducibility of the method was assessed using test-retest data. It was shown that the incorporation of image-derived information increased the accuracy of total volume of distribution (V T) estimates, averaged across all regions, by 40% and non-displaceable binding potential (BP ND) estimates by 16% compared to the original SIME. Particular improvements were observed in K1 parameter estimates. BP ND estimates, based on the proposed method and the gold standard arterial sample-derived AIF, were not significantly different (P=0.7). CONCLUSIONS: The results of this work indicate that the proposed method with prior AIF information obtained from a partial volume corrected image-derived whole blood curve, and modelled parent fraction, has the potential to be used as an alternative non-invasive method to perform kinetic analysis of tracers with metabolite products.

17.
EJNMMI Phys ; 5(1): 14, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29869186

RESUMO

BACKGROUND: Matched attenuation maps are vital for obtaining accurate and reproducible kinetic and static parameter estimates from PET data. With increased interest in PET/CT imaging of diffuse lung diseases for assessing disease progression and treatment effectiveness, understanding the extent of the effect of respiratory motion and establishing methods for correction are becoming more important. In a previous study, we have shown that using the wrong attenuation map leads to large errors due to density mismatches in the lung, especially in dynamic PET scans. Here, we extend this work to the case where the study is sub-divided into several scans, e.g. for patient comfort, each with its own CT (cine-CT and 'snap shot' CT). A method to combine multi-CT information into a combined-CT has then been developed, which averages the CT information from each study section to produce composite CT images with the lung density more representative of that in the PET data. This combined-CT was applied to nine patients with idiopathic pulmonary fibrosis, imaged with dynamic 18F-FDG PET/CT to determine the improvement in the precision of the parameter estimates. RESULTS: Using XCAT simulations, errors in the influx rate constant were found to be as high as 60% in multi-PET/CT studies. Analysis of patient data identified displacements between study sections in the time activity curves, which led to an average standard error in the estimates of the influx rate constant of 53% with conventional methods. This reduced to within 5% after use of combined-CTs for attenuation correction of the study sections. CONCLUSIONS: Use of combined-CTs to reconstruct the sections of a multi-PET/CT study, as opposed to using the individually acquired CTs at each study stage, produces more precise parameter estimates and may improve discrimination between diseased and normal lung.

18.
IEEE Trans Med Imaging ; 37(4): 1000-1010, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29610077

RESUMO

This paper reports on the feasibility of using a quasi-Newton optimization algorithm, limited-memory Broyden-Fletcher-Goldfarb-Shanno with boundary constraints (L-BFGS-B), for penalized image reconstruction problems in emission tomography (ET). For further acceleration, an additional preconditioning technique based on a diagonal approximation of the Hessian was introduced. The convergence rate of L-BFGS-B and the proposed preconditioned algorithm (L-BFGS-B-PC) was evaluated with simulated data with various factors, such as the noise level, penalty type, penalty strength and background level. Data of three 18F-FDG patient acquisitions were also reconstructed. Results showed that the proposed L-BFGS-B-PC outperforms L-BFGS-B in convergence rate for all simulated conditions and the patient data. Based on these results, L-BFGS-B-PC shows promise for clinical application.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada de Emissão/métodos , Humanos , Imagens de Fantasmas , Radiografia Torácica , Tórax/diagnóstico por imagem
19.
J Nucl Med ; 59(9): 1467-1473, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523630

RESUMO

In PET imaging, patient motion due to respiration can lead to artifacts and blurring, in addition to quantification errors. The integration of PET imaging with MRI in PET/MRI scanners provides spatially aligned complementary clinical information and allows the use of high-contrast, high-spatial-resolution MR images to monitor and correct motion-corrupted PET data. On a patient cohort, we tested the ability of our joint PET/MRI-based predictive motion model to correct respiratory motion in PET and show it can improve lesion detectability and quantitation and reduce image artifacts. Methods: Using multiple tracers and multiple organ locations, we applied our motion correction method to 42 clinical PET/MRI patient datasets containing 162 PET-avid lesions. Quantitative changes were calculated using SUV changes in avid lesions. Lesion detectability changes were explored with a study in which 2 radiologists identified lesions in uncorrected and motion-corrected images and provided confidence scores. Results: Mean increases of 12.4% for SUVpeak and 17.6% for SUVmax after motion correction were found. In the detectability study, confidence scores for detecting avid lesions increased, with a rise in mean score from 2.67 to 3.01 (of 4) after motion correction and a rise in detection rate from 74% to 84%. Of 162 confirmed lesions, 49 showed an increase in all 3 metrics-SUVpeak, SUVmax, and combined reader confidence score-whereas only 2 lesions showed a decrease. We also present clinical case studies demonstrating the effect that respiratory motion correction of PET data can have on patient management, with increased numbers of detected lesions, improved lesion sharpness and localization, and reduced attenuation-based artifacts. Conclusion: We demonstrated significant improvements in quantification and detection of PET-avid lesions, with specific case study examples showing where motion correction has the potential to affect diagnosis or patient care.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Movimento , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Respiração , Estudos de Coortes , Humanos , Fatores de Tempo
20.
Eur J Nucl Med Mol Imaging ; 45(5): 806-815, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29335764

RESUMO

PURPOSE: There is a lack of prognostic biomarkers in idiopathic pulmonary fibrosis (IPF) patients. The objective of this study is to investigate the potential of 18F-FDG-PET/ CT to predict mortality in IPF. METHODS: A total of 113 IPF patients (93 males, 20 females, mean age ± SD: 70 ± 9 years) were prospectively recruited for 18F-FDG-PET/CT. The overall maximum pulmonary uptake of 18F-FDG (SUVmax), the minimum pulmonary uptake or background lung activity (SUVmin), and target-to-background (SUVmax/ SUVmin) ratio (TBR) were quantified using routine region-of-interest analysis. Kaplan-Meier analysis was used to identify associations of PET measurements with mortality. We also compared PET associations with IPF mortality with the established GAP (gender age and physiology) scoring system. Cox analysis assessed the independence of the significant PET measurement(s) from GAP score. We investigated synergisms between pulmonary 18F-FDG-PET measurements and GAP score for risk stratification in IPF patients. RESULTS: During a mean follow-up of 29 months, there were 54 deaths. The mean TBR ± SD was 5.6 ± 2.7. Mortality was associated with high pulmonary TBR (p = 0.009), low forced vital capacity (FVC; p = 0.001), low transfer factor (TLCO; p < 0.001), high GAP index (p = 0.003), and high GAP stage (p = 0.003). Stepwise forward-Wald-Cox analysis revealed that the pulmonary TBR was independent of GAP classification (p = 0.010). The median survival in IPF patients with a TBR < 4.9 was 71 months, whilst in those with TBR > 4.9 was 24 months. Combining PET data with GAP data ("PET modified GAP score") refined the ability to predict mortality. CONCLUSIONS: A high pulmonary TBR is independently associated with increased risk of mortality in IPF patients.


Assuntos
Fluordesoxiglucose F18/farmacocinética , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Idoso , Feminino , Humanos , Pulmão , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Medição de Risco , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...