Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 137(46): 14610-25, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26561984

RESUMO

Protein energy landscapes are highly complex, yet the vast majority of states within them tend to be invisible to experimentalists. Here, using site-directed mutagenesis and exploiting the simplicity of tandem-repeat protein structures, we delineate a network of these states and the routes between them. We show that our target, gankyrin, a 226-residue 7-ankyrin-repeat protein, can access two alternative (un)folding pathways. We resolve intermediates as well as transition states, constituting a comprehensive series of snapshots that map early and late stages of the two pathways and show both to be polarized such that the repeat array progressively unravels from one end of the molecule or the other. Strikingly, we find that the protein folds via one pathway but unfolds via a different one. The origins of this behavior can be rationalized using the numerical results of a simple statistical mechanics model that allows us to visualize the equilibrium behavior as well as single-molecule folding/unfolding trajectories, thereby filling in the gaps that are not accessible to direct experimental observation. Our study highlights the complexity of repeat-protein folding arising from their symmetrical structures; at the same time, however, this structural simplicity enables us to dissect the complexity and thereby map the precise topography of the energy landscape in full breadth and remarkable detail. That we can recapitulate the key features of the folding mechanism by computational analysis of the native structure alone will help toward the ultimate goal of designed amino-acid sequences with made-to-measure folding mechanisms-the Holy Grail of protein folding.


Assuntos
Proteínas/química , Cinética , Dobramento de Proteína
2.
J Biol Chem ; 290(29): 18187-18198, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26032422

RESUMO

Allostery, where remote ligand binding alters protein function, is essential for the control of metabolism. Here, we have identified a highly sophisticated allosteric response that allows complex control of the pathway for aromatic amino acid biosynthesis in the pathogen Mycobacterium tuberculosis. This response is mediated by an enzyme complex formed by two pathway enzymes: chorismate mutase (CM) and 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Whereas both enzymes are active in isolation, the catalytic activity of both enzymes is enhanced, and in particular that of the much smaller CM is greatly enhanced (by 120-fold), by formation of a hetero-octameric complex between CM and DAH7PS. Moreover, on complex formation M. tuberculosis CM, which has no allosteric response on its own, acquires allosteric behavior to facilitate its own regulatory needs by directly appropriating and partly reconfiguring the allosteric machinery that provides a synergistic allosteric response in DAH7PS. Kinetic and analytical ultracentrifugation experiments demonstrate that allosteric binding of phenylalanine specifically promotes hetero-octameric complex dissociation, with concomitant reduction of CM activity. Together, DAH7PS and CM from M. tuberculosis provide exquisite control of aromatic amino acid biosynthesis, not only controlling flux into the start of the pathway, but also directing the pathway intermediate chorismate into either Phe/Tyr or Trp biosynthesis.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Aminoácidos Aromáticos/metabolismo , Corismato Mutase/metabolismo , Mycobacterium tuberculosis/enzimologia , Tuberculose/microbiologia , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , Regulação Alostérica , Corismato Mutase/química , Cristalografia por Raios X , Humanos , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/metabolismo , Multimerização Proteica
3.
Nucleic Acids Res ; 42(3): 1857-72, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24234453

RESUMO

Flap endonuclease 1 (Fen1) is a highly conserved structure-specific nuclease that catalyses a specific incision to remove 5' flaps in double-stranded DNA substrates. Fen1 plays an essential role in key cellular processes, such as DNA replication and repair, and mutations that compromise Fen1 expression levels or activity have severe health implications in humans. The nuclease activity of Fen1 and other FEN family members can be stimulated by processivity clamps such as proliferating cell nuclear antigen (PCNA); however, the exact mechanism of PCNA activation is currently unknown. Here, we have used a combination of ensemble and single-molecule Förster resonance energy transfer together with protein-induced fluorescence enhancement to uncouple and investigate the substrate recognition and catalytic steps of Fen1 and Fen1/PCNA complexes. We propose a model in which upon Fen1 binding, a highly dynamic substrate is bent and locked into an open flap conformation where specific Fen1/DNA interactions can be established. PCNA enhances Fen1 recognition of the DNA substrate by further promoting the open flap conformation in a step that may involve facilitated threading of the 5' ssDNA flap. Merging our data with existing crystallographic and molecular dynamics simulations we provide a solution-based model for the Fen1/PCNA/DNA ternary complex.


Assuntos
DNA/química , Endonucleases Flap/química , Antígeno Nuclear de Célula em Proliferação/química , DNA/metabolismo , Endonucleases Flap/metabolismo , Transferência Ressonante de Energia de Fluorescência , Ácidos Nucleicos Imobilizados/análise , Modelos Moleculares , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica
4.
J Mol Biol ; 425(9): 1582-92, 2013 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-23274137

RESUMO

3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyzes the first step in the shikimate pathway, the pathway responsible for the biosynthesis of the aromatic amino acids Trp, Phe, and Tyr. Unlike many other organisms that produce up to three isozymes, each feedback-regulated by one of the aromatic amino acid pathway end products, Mycobacterium tuberculosis expresses a single DAH7PS enzyme that can be controlled by combinations of aromatic amino acids. This study shows that the synergistic inhibition of this enzyme by a combination of Trp and Phe can be significantly augmented by the addition of Tyr. We used X-ray crystallography, mutagenesis, and isothermal titration calorimetry studies to show that DAH7PS from M. tuberculosis possesses a Tyr-selective site in addition to the Trp and Phe sites, revealing an unusual and highly sophisticated network of three synergistic allosteric sites on one enzyme. This ternary inhibitory response, by a combination of all three aromatic amino acids, allows a tunable response of the protein to changing metabolic demands.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , 3-Desoxi-7-Fosfo-Heptulonato Sintase/biossíntese , Aminoácidos Aromáticos/biossíntese , Mycobacterium tuberculosis/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , Regulação Alostérica/genética , Sítio Alostérico/genética , Aminoácidos Aromáticos/farmacologia , Cristalografia por Raios X , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Regulação para Cima/genética
5.
J Mol Biol ; 415(4): 716-26, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22154807

RESUMO

Allosteric regulation of protein function is critical for metabolic control. Binding of allosteric effectors elicits a functional change in a remote ligand binding site on a protein by altering the equilibrium between different forms in the protein ensemble. 3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyzes the first step in the shikimate pathway, which is responsible for the biosynthesis of aromatic amino acids Trp, Phe, and Tyr. Feedback regulation by the aromatic amino acids is important for controlling the cellular levels of the aromatic amino acids, and many organisms have two or more DAH7PS isozymes that show differing sensitivities to aromatic compounds. Mycobacterium tuberculosis expresses a single DAH7PS that is insensitive to the presence of a single amino acid yet shows extraordinary synergistic inhibition by combinations of the pathway end products Trp and Phe. The Trp+Phe-bound structure for M. tuberculosis DAH7PS, showing two separate binding sites occupied by Trp and Phe for each monomer of the tetrameric protein, was obtained by cocrystallization. Comparison of this structure with the ligand-free M. tuberculosis DAH7PS demonstrates that there is no significant change in conformation upon ligand binding, suggesting that contributions from altered dynamic properties of the enzyme may account for the allosteric inhibition. Isothermal titration calorimetry experiments demonstrate that the inhibitor binding sites are in direct communication. Molecular dynamics simulations reveal different changes in dynamic fluctuations upon single ligand binding compared to dual ligand binding. These changes account for the cross-talk between inhibitor binding sites and the active site, simultaneously potentiating both dual ligand binding and diminution of catalytic function.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Regulação Alostérica/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Sítios de Ligação , Domínio Catalítico/genética , Domínio Catalítico/fisiologia , Cristalografia por Raios X , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Fenilalanina/química , Fenilalanina/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Triptofano/química , Triptofano/metabolismo , Estudos de Validação como Assunto
6.
Biochemistry ; 50(43): 9318-27, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21942786

RESUMO

The enzyme 3-deoxy-D-manno-octulosonate 8-phosphate (KDO8P) synthase catalyzes the reaction between phosphoenolpyruvate and arabinose 5-phosphate (A5P) in the first committed step in the biosynthetic pathway for the formation of 3-deoxy-D-manno-octulosonate, an important component in the cell wall of Gram-negative bacteria. KDO8P synthase is evolutionarily related to the first enzyme of the shikimate pathway, 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAH7P) synthase, which uses erythrose 4-phosphate in place of A5P. The A5P binding site in KDO8P synthase is formed by three long loops that extend from the core catalytic (ß/α)(8) barrel, ß2α2, ß7α7, and ß8α8. The extended ß7α7 loop is always present in KDO8P synthase yet is not observed for DAH7P synthase. Modeling of this loop indicated interactions between this loop and the extended ß2α2 loop; both loops provide key hydrogen-bonding contacts with A5P. The two absolutely conserved residues on the ß7α7 loop (Gln and Ser) were mutated to Ala in both the metal-dependent KDO8P synthase from Acidithiobacillus ferrooxidans and the metal-independent KDO8P synthase from Neisseria meningitidis. In addition, mutants were constructed for both enzymes with the extended ß7α7 loop excised to match the DAH7P synthase architecture. Removal of the loop extension severely hindered efficient catalysis, dramatically increasing the K(m)(A5P) and reducing the k(cat) for both enzymes. Excision of the complete loop was far more detrimental to catalysis than the double mutations of the two conserved Gln and Ser residues. Therefore, the presence of the entire extended ß7α7 loop is important for efficient catalysis by KDO8P synthase, with the loop acting to promote efficient and productive binding of A5P.


Assuntos
Acidithiobacillus/enzimologia , Aldeído Liases/química , Aldeído Liases/metabolismo , Neisseria meningitidis/enzimologia , Acidithiobacillus/química , Acidithiobacillus/genética , Aldeído Liases/genética , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Neisseria meningitidis/química , Neisseria meningitidis/genética , Pentosefosfatos/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
7.
J Biol Chem ; 286(18): 16197-207, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21454647

RESUMO

Tuberculosis remains a serious global health threat, with the emergence of multidrug-resistant strains highlighting the urgent need for novel antituberculosis drugs. The enzyme 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyzes the first step of the shikimate pathway for the biosynthesis of aromatic compounds. This pathway has been shown to be essential in Mycobacterium tuberculosis, the pathogen responsible for tuberculosis. DAH7PS catalyzes a condensation reaction between P-enolpyruvate and erythrose 4-phosphate to give 3-deoxy-D-arabino-heptulosonate 7-phosphate. The enzyme reaction mechanism is proposed to include a tetrahedral intermediate, which is formed by attack of an active site water on the central carbon of P-enolpyruvate during the course of the reaction. Molecular modeling of this intermediate into the active site reported in this study shows a configurational preference consistent with water attack from the re face of P-enolpyruvate. Based on this model, we designed and synthesized an inhibitor of DAH7PS that mimics this reaction intermediate. Both enantiomers of this intermediate mimic were potent inhibitors of M. tuberculosis DAH7PS, with inhibitory constants in the nanomolar range. The crystal structure of the DAH7PS-inhibitor complex was solved to 2.35 Å. Both the position of the inhibitor and the conformational changes of active site residues observed in this structure correspond closely to the predictions from the intermediate modeling. This structure also identifies a water molecule that is located in the appropriate position to attack the re face of P-enolpyruvate during the course of the reaction, allowing the catalytic mechanism for this enzyme to be clearly defined.


Assuntos
Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Inibidores Enzimáticos/química , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Desenho de Fármacos , Estrutura Terciária de Proteína , Ácido Chiquímico/química , Ácido Chiquímico/metabolismo , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico , Tuberculose/enzimologia
8.
Biochemistry ; 50(18): 3686-95, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21438567

RESUMO

3-Deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) catalyzes the reaction between three-carbon phosphoenolpyruvate (PEP) and five-carbon d-arabinose 5-phosphate (A5P), generating KDO8P, a key intermediate in the biosynthetic pathway to 3-deoxy-D-manno-octulosonate, a component of the lipopolysaccharide of the Gram-negative bacterial cell wall. Both metal-dependent and metal-independent forms of KDO8PS have been characterized. KDO8PS is evolutionarily and mechanistically related to the first enzyme of the shikimate pathway, the obligately divalent metal ion-dependent 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS) that couples PEP and four-carbon D-erythrose 4-phosphate (E4P) to give DAH7P. In KDO8PS, an absolutely conserved KANRS motif forms part of the A5P binding site, whereas in DAH7PS, an absolutely conserved KPR(S/T) motif accommodates E4P. Here, we have characterized four mutants of this motif (AANRS, KAARS, KARS, and KPRS) in metal-dependent KDO8PS from Acidithiobacillus ferrooxidans and metal-independent KDO8PS from Neisseria meningitidis to test the roles of the universal Lys and the Ala-Asn portion of the KANRS motif. The X-ray structures, determined for the N. meningitidis KDO8PS mutants, indicated no gross structural penalty resulting from mutation, but the subtle changes observed in the active sites of these mutant proteins correlated with their altered catalytic function. (1) The AANRS mutations destroyed catalytic activity. (2) The KAARS mutations lowered substrate selectivity, as well as activity. (3) Replacing KANRS with KARS or KPRS destroyed KDO8PS activity but did not produce a functional DAH7PS. Thus, Lys is critical to catalysis, and other changes are necessary to switch substrate specificity for both the metal-independent and metal-dependent forms of these enzymes.


Assuntos
Aldeído Liases/química , Motivos de Aminoácidos , Sítios de Ligação , Catálise , Cristalografia por Raios X/métodos , Escherichia coli/enzimologia , Fluorometria/métodos , Ligação de Hidrogênio , Cinética , Modelos Químicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Especificidade por Substrato
9.
J Biol Chem ; 285(40): 30567-76, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20667835

RESUMO

The shikimate pathway, responsible for aromatic amino acid biosynthesis, is required for the growth of Mycobacterium tuberculosis and is a potential drug target. The first reaction is catalyzed by 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Feedback regulation of DAH7PS activity by aromatic amino acids controls shikimate pathway flux. Whereas Mycobacterium tuberculosis DAH7PS (MtuDAH7PS) is not inhibited by the addition of Phe, Tyr, or Trp alone, combinations cause significant loss of enzyme activity. In the presence of 200 µm Phe, only 2.4 µm Trp is required to reduce enzymic activity to 50%. Reaction kinetics were analyzed in the presence of inhibitory concentrations of Trp/Phe or Trp/Tyr. In the absence of inhibitors, the enzyme follows Michaelis-Menten kinetics with respect to substrate erythrose 4-phosphate (E4P), whereas the addition of inhibitor combinations caused significant homotropic cooperativity with respect to E4P, with Hill coefficients of 3.3 (Trp/Phe) and 2.8 (Trp/Tyr). Structures of MtuDAH7PS/Trp/Phe, MtuDAH7PS/Trp, and MtuDAH7PS/Phe complexes were determined. The MtuDAH7PS/Trp/Phe homotetramer binds four Trp and six Phe molecules. Binding sites for both aromatic amino acids are formed by accessory elements to the core DAH7PS (ß/α)(8) barrel that are unique to the type II DAH7PS family and contribute to the tight dimer and tetramer interfaces. A comparison of the liganded and unliganded MtuDAH7PS structures reveals changes in the interface areas associated with inhibitor binding and a small displacement of the E4P binding loop. These studies uncover a previously unrecognized mode of control for the branched pathways of aromatic amino acid biosynthesis involving synergistic inhibition by specific pairs of pathway end products.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Aminoácidos Aromáticos/biossíntese , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , Regulação Alostérica/fisiologia , Proteínas de Bactérias/antagonistas & inibidores , Cinética , Fosfatos Açúcares/metabolismo
10.
Biochim Biophys Acta ; 1804(7): 1526-36, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20406700

RESUMO

3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) catalyzes the reaction between phosphoenol pyruvate and D-arabinose 5-phosphate to generate KDO8P. This reaction is part of the biosynthetic pathway to 3-deoxy-D-manno-octulosonate, a component of the lipopolysaccharide of the Gram-negative bacterial cell wall. Two distinct groups of KDO8PSs exist, differing by the absolute requirement of a divalent metal ion. In this study Acidithiobacillus ferrooxidans KDO8PS has been expressed and purified and shown to require a divalent metal ion, with Mn2+, Co2+ and Cd2+ (in decreasing order) being able to restore activity to metal-free enzyme. Cd2+ significantly enhanced the stability of the enzyme, raising the Tm by 14 degrees C. D-glucose 6-phosphate and D-erythrose 4-phosphate were not substrates for A. ferrooxidans KDO8PS, whereas 2-deoxy-D-ribose 5-phosphate was a poor substrate and there was negligible activity with D-ribose 5-phosphate. The 243AspGlyPro245 motif is absolutely conserved in the metal-independent group of synthases, but the Gly and Pro sites are variable in the metal-dependent enzymes. Substitution of the putative metal-binding Asp243 to Ala in A. ferrooxidans KDO8PS gave inactive enzyme, whereas substitutions Asp243Glu or Pro245Ala produced active enzymes with altered metal-dependency profiles. Prior studies indicated that exchange of a metal-binding Cys for Asn converts metal-dependent KDO8P synthase into a metal-independent form. Unexpectedly, this mutation in A. ferrooxidans KDO8P synthase (Cys21Asn) gave inactive enzyme. This finding, together with modest activity towards 2-deoxy-D-ribose 5-phosphate suggests similarities between the A. ferrooxidans KDO8PS and the related metal-dependent 3-deoxy-D-arabino-heptulosonate phosphate synthase, and highlights the importance of the AspGlyPro loop in positioning the substrate for effective catalysis in all KDO8P synthases.


Assuntos
Acidithiobacillus/enzimologia , Aldeído Liases/genética , Aldeído Liases/metabolismo , Análise Mutacional de DNA , Calorimetria/métodos , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Íons , Cinética , Metais/química , Modelos Moleculares , Conformação Molecular , Peso Molecular , Mutagênese Sítio-Dirigida , Especificidade por Substrato , Temperatura
11.
Nucleic Acids Res ; 38(5): 1664-75, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20008103

RESUMO

XPF is a structure-specific endonuclease that preferentially cleaves 3' DNA flaps during a variety of repair processes. The crystal structure of a crenarchaeal XPF protein bound to a DNA duplex yielded insights into how XPF might recognise branched DNA structures, and recent kinetic data have demonstrated that the sliding clamp PCNA acts as an essential cofactor, possibly by allowing XPF to distort the DNA structure into a proper conformation for efficient cleavage to occur. Here, we investigate the solution structure of the 3'-flap substrate bound to XPF in the presence and absence of PCNA using intramolecular Förster resonance energy transfer (FRET). We demonstrate that recognition of the flap substrate by XPF involves major conformational changes of the DNA, including a 90 degrees kink of the DNA duplex and organization of the single-stranded flap. In the presence of PCNA, there is a further substantial reorganization of the flap substrate bound to XPF, providing a structural basis for the observation that PCNA has an essential catalytic role in this system. The wider implications of these observations for the plethora of PCNA-dependent enzymes are discussed.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/química , Endodesoxirribonucleases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Conformação de Ácido Nucleico
12.
Nucleic Acids Res ; 36(21): 6720-7, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18948279

RESUMO

The sliding clamp Proliferating Cell Nuclear Antigen (PCNA) functions as a recruiter and organizer of a wide variety of DNA modifying enzymes including nucleases, helicases, polymerases and glycosylases. The 5'-flap endonuclease Fen-1 is essential for Okazaki fragment processing in eukaryotes and archaea, and is targeted to the replication fork by PCNA. Crenarchaeal XPF, a 3'-flap endonuclease, is also stimulated by PCNA in vitro. Using a novel continuous fluorimetric assay, we demonstrate that PCNA activates these two nucleases by fundamentally different mechanisms. PCNA stimulates Fen-1 by increasing the enzyme's binding affinity for substrates, as suggested previously. However, PCNA activates XPF by increasing the catalytic rate constant by four orders of magnitude without affecting the K(M). PCNA may function as a platform upon which XPF exerts force to distort DNA substrates, destabilizing the substrate and/or stabilizing the transition state structure. This suggests that PCNA can function directly in supporting catalysis as an essential cofactor in some circumstances, a new role for a protein that is generally assumed to perform a passive targeting and organizing function in molecular biology. This could provide a mechanism for the exquisite control of nuclease activity targeted to specific circumstances, such as replication forks or damaged DNA with pre-loaded PCNA.


Assuntos
Proteínas Arqueais/metabolismo , Endonucleases Flap/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Catálise , DNA/química , DNA/metabolismo , Cinética , Espectrometria de Fluorescência/métodos , Sulfolobus solfataricus/enzimologia
13.
Nature ; 418(6899): 743-50, 2002 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12181558

RESUMO

A physical map of a genome is an essential guide for navigation, allowing the location of any gene or other landmark in the chromosomal DNA. We have constructed a physical map of the mouse genome that contains 296 contigs of overlapping bacterial clones and 16,992 unique markers. The mouse contigs were aligned to the human genome sequence on the basis of 51,486 homology matches, thus enabling use of the conserved synteny (correspondence between chromosome blocks) of the two genomes to accelerate construction of the mouse map. The map provides a framework for assembly of whole-genome shotgun sequence data, and a tile path of clones for generation of the reference sequence. Definition of the human-mouse alignment at this level of resolution enables identification of a mouse clone that corresponds to almost any position in the human genome. The human sequence may be used to facilitate construction of other mammalian genome maps using the same strategy.


Assuntos
Genoma , Camundongos/genética , Mapeamento Físico do Cromossomo/métodos , Animais , Cromossomos/genética , Cromossomos Humanos Par 6/genética , Clonagem Molecular , Sequência Conservada/genética , Mapeamento de Sequências Contíguas/métodos , Genoma Humano , Humanos , Dados de Sequência Molecular , Mapeamento de Híbridos Radioativos , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...