Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ambio ; 53(4): 579-591, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38142243

RESUMO

Our objective is to understand the effectiveness of local and international nutrient pollution mitigation efforts when targeting better water quality in the region's coastal waters. To this end, we developed an integrated modeling framework for the Archipelago Sea located in the Baltic Sea in Northern Europe, conducted what-if analyses for various ambition levels of nutrient abatement, and studied the long-term consequences at the sea basin scale. We demonstrate that in outer parts of the Archipelago Sea, a good eutrophication status can be achieved if the current internationally agreed policy goals for nutrient abatement are successfully met. In inner coastal areas, current goals for phytoplankton biomass could be reached only through extreme mitigation efforts in all polluting sectors and large-scale application of yet poorly tested ecological engineering methods. This result calls for carefully considering the relevance of current threshold values for phytoplankton and its role as a dominant indicator of good ecological status.


Assuntos
Eutrofização , Objetivos , Qualidade da Água , Europa (Continente) , Biomassa , Fitoplâncton , Nitrogênio/análise , Monitoramento Ambiental/métodos
2.
Sci Total Environ ; 783: 146871, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33865143

RESUMO

This paper introduces a framework for extending global climate and socioeconomic scenarios in order to study agricultural nutrient pollution on an individual catchment scale. Our framework builds on and extends Representative Concentration Pathways (RCPs) and Shared Socioeconomic Pathways (SSPs) at the spatial and temporal scales that are relevant for the drivers of animal husbandry, manure recycling and the application of inorganic fertilisers in crop production. Our case study area is the Aura river catchment in South-West Finland, which discharges into the heavily eutrophic Baltic Sea. The Aura river catchment has intensive agriculture - both livestock and crop production. Locally adjusted and interpreted climate and socioeconomic scenarios were used as inputs to a field-level economic optimisation in order to study how farmers might react to the changing markets and climate conditions under different SSPs. The results on economically optimal fertilisation levels were then used as inputs to the spatially and temporally explicit nutrient loading model (VEMALA). Alternative manure recycling strategies that matched with SSP narratives were studied as means to reduce the phosphorus (P) overfertilisation in areas with high livestock density. According to our simulations, on average the P loads increased by 18% during 2071-2100 from the current level and the variation in P loads between scenarios was large (from -14% to +50%). By contrast, the nitrogen (N) loads had decreased on average by -9% (with variation from -20% to +3%) by the end of the current century. Phosphorus loading was most sensitive to manure recycling strategies and the speed of climate change. Nitrogen loading was less sensitive to changes in climate and socioeconomic drivers.

3.
Sci Total Environ ; 540: 79-89, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26184863

RESUMO

The worldwide economic downturn and the climate change in the beginning of 21st century have stressed the need for cost efficient and systematic operations model for the monitoring and management of surface waters. However, these processes are still all too fragmented and incapable to respond these challenges. For example in Finland, the estimation of the costs and benefits of planned management measures is insufficient. On this account, we present a new operations model to streamline these processes and to ensure the lucid decision making and the coherent implementation which facilitate the participation of public and all the involved stakeholders. The model was demonstrated in the real world management of a lake. The benefits, pitfalls and development needs were identified. After the demonstration, the operations model was put into operation and has been actively used in several other management projects throughout Finland.

4.
Sci Total Environ ; 529: 168-81, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26011613

RESUMO

Climate change is expected to increase annual and especially winter runoff, shorten the snow cover period and therefore increase both nutrient leaching from agricultural areas and natural background leaching in the Baltic Sea catchment. We estimated the effects of climate change and possible future scenarios of agricultural changes on the phosphorus and nitrogen loading to the Baltic Sea from Finnish catchments. In the agricultural scenarios we assumed that the prices of agricultural products are among the primary drivers in the adaptation to climate change, as they affect the level of fertilization and the production intensity and volume and, hence, the modeled changes in gross nutrient loading from agricultural land. Optimal adaptation may increase production while supporting appropriate use of fertilization, resulting in low nutrient balance in the fields. However, a less optimal adaptation may result in higher nutrient balance and increased leaching. The changes in nutrient loading to the Baltic Sea were predicted by taking into account the agricultural scenarios in a nutrient loading model for Finnish catchments (VEMALA), which simulates runoff, nutrient processes, leaching and transport on land, in rivers and in lakes. We thus integrated the effects of climate change in the agricultural sector, nutrient loading in fields, natural background loading, hydrology and nutrient transport and retention processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...