Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Brain Plast ; 9(1-2): 21-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993579

RESUMO

Background: Microglia and inflammation play a significant role in Alzheimer's disease (AD). Physical exercise and peripheral signals can influence microglial activity in the brain. Modulating the inflammatory response in the brain may provide therapeutic approaches for AD. Objective: To assess the effects of intravenously administered blood plasma from exercise-trained donor rats on cognitive function, microglia, and cytokine levels in an AD rat model at two different pathological stages; an early pre-plaque stage and a later stage closer to the emergence of extracellular plaques. Methods: Male transgenic McGill-R-Thy1-APP rats aged 2 and 5 months received 14 injections over 6 weeks: 1) plasma from exercise-trained rats (ExPlas), 2) plasma from sedentary rats (SedPlas), or 3) saline. Cognitive function was evaluated in a novel object recognition task. Microglia count and morphology were analyzed in cornu ammonis, dentate gyrus, entorhinal cortex, and subiculum. Amyloid plaque number and size were assessed in the rats with the later treatment start. A multiplex assay was used to measure 23 cytokines in cornu ammonis. Results: In rats treated from 2 months of age, ExPlas and SedPlas increased number and length of microglial branches in cornu ammonis and dentate gyrus compared to saline. Only ExPlas-treated rats exhibited similar changes in subiculum, while entorhinal cortex showed no differences across treatments. Microglia count remained unaffected. In rats treated from 5 months of age, there were no significant differences in microglia count or morphology or the number or size of amyloid plaques in any brain region. Compared to both other treatments in early pre-plaque stage rats, SedPlas increased TNF-α levels. ExPlas upregulated GM-CSF, IL-18, and VEGF, while SedPlas increased IL-10 compared to saline. In later-stage rats, ExPlas upregulated IL-17, and SedPlas upregulated TNF-α compared to saline. There were no effects of treatments on recognition memory. Conclusions: Intravenous injections of blood plasma from exercise-trained and sedentary donors differentially modulated microglial morphology and cytokine levels in the AD rat model at an early pre-plaque stage of pathology. Exercised plasma may reduce proinflammatory TNF-α signaling and promote microglial responses to early Aß accumulation but the lack of treatment effects in the later-stage rats emphasizes the potential importance of treatment timing.

2.
J Sport Health Sci ; 13(2): 245-255, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37500010

RESUMO

BACKGROUND: Exercise training promotes brain plasticity and is associated with protection against cognitive impairment and Alzheimer's disease (AD). These beneficial effects may be partly mediated by blood-borne factors. Here we used an in vitro model of AD to investigate effects of blood plasma from exercise-trained donors on neuronal viability, and an in vivo rat model of AD to test whether such plasma impacts cognitive function, amyloid pathology, and neurogenesis. METHODS: Mouse hippocampal neuronal cells were exposed to AD-like stress using amyloid-ß and treated with plasma collected from human male donors 3 h after a single bout of high-intensity exercise. For in vivo studies, blood was collected from exercise-trained young male Wistar rats (high-intensity intervals 5 days/week for 6 weeks). Transgenic AD rats (McGill-R-Thy1-APP) were injected 5 times/fortnight for 6 weeks at 2 months or 5 months of age with either (a) plasma from the exercise-trained rats, (b) plasma from sedentary rats, or (c) saline. Cognitive function, amyloid plaque pathology, and neurogenesis were assessed. The plasma used for the treatment was analyzed for 23 cytokines. RESULTS: Plasma from exercised donors enhanced cell viability by 44.1% (p = 0.032) and reduced atrophy by 50.0% (p < 0.001) in amyloid-ß-treated cells. In vivo exercised plasma treatment did not alter cognitive function or amyloid plaque pathology but did increase hippocampal neurogenesis by ∼3 fold, regardless of pathological stage, when compared to saline-treated rats. Concentrations of 7 cytokines were significantly reduced in exercised plasma compared to sedentary plasma. CONCLUSION: Our proof-of-concept study demonstrates that plasma from exercise-trained donors can protect neuronal cells in culture and promote adult hippocampal neurogenesis in the AD rat brain. This effect may be partly due to reduced pro-inflammatory signaling molecules in exercised plasma.


Assuntos
Doença de Alzheimer , Ratos , Masculino , Camundongos , Animais , Humanos , Placa Amiloide/patologia , Placa Amiloide/prevenção & controle , Ratos Wistar , Hipocampo/patologia , Peptídeos beta-Amiloides/metabolismo , Neurogênese/fisiologia , Citocinas , Plasma/metabolismo
3.
EClinicalMedicine ; 52: 101607, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36034407

RESUMO

Background: The Personal Activity Intelligence (PAI) translates heart rate during daily activity into a weekly score. Obtaining a weekly PAI score ≥100 is associated with reduced risk of premature morbidity and mortality from cardiovascular diseases. Here, we determined whether changes in PAI score are associated with changes in risk of incident dementia and dementia-related mortality. Methods: We conducted a prospective cohort study of 29,826 healthy individuals. Using data from the Trøndelag Health-Study (HUNT), PAI was estimated 10 years apart (HUNT1 1984-86 and HUNT2 1995-97). Adjusted hazard-ratios (aHR) and 95%-confidence intervals (CI) for incidence of and death from dementia were related to changes in PAI using Cox regression analyses. Findings: During a median follow-up time of 24.5 years (interquartile range [IQR]: 24.1-25.0) for dementia incidence and 23.6 years (IQR: 20.8-24.2) for dementia-related mortality, there were 1998 incident cases and 1033 dementia-related deaths. Individuals who increased their PAI score over time or maintained a high PAI score at both assessments had reduced risk of dementia incidence and dementia-related mortality. Compared with persistently inactive individuals (0 weekly PAI) at both time points, the aHRs for those with a PAI score ≥100 at both occasions were 0.75 (95% CI: 0.58-0.97) for incident dementia, and 0.62 (95% CI: 0.43-0.91) for dementia-related mortality. Using PAI score <100 at both assessments as the reference cohort, those who increased from <100 at HUNT1 to ≥100 at HUNT2 had aHR of 0.83 (95% CI: 0.72-0.96) for incident dementia, and gained 2.8 (95% CI: 1.3-4.2, P<0.0001) dementia-free years. For dementia-related mortality, the corresponding aHR was 0.74 (95% CI: 0.59-0.92) and years of life gained were 2.4 (95% CI: 1.0-3.8, P=0.001). Interpretation: Maintaining a high weekly PAI score and increases in PAI scores over time were associated with a reduced risk of incident dementia and dementia-related mortality. Our findings extend the scientific evidence regarding the protective role of PA for dementia prevention, and suggest that PAI may be a valuable tool in guiding research-based PA recommendations. Funding: The Norwegian Research Council, the Liaison Committee between the Central Norway Regional Health Authority and Norwegian University of Science and Technology (NTNU), Trondheim, Norway.

4.
Ageing Res Rev ; 75: 101559, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34999248

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia and there is currently no cure. Novel approaches to treat AD and curb the rapidly increasing worldwide prevalence and costs of dementia are needed. Physical inactivity is a significant modifiable risk factor for AD, estimated to contribute to 12.7% of AD cases worldwide. Exercise interventions in humans and animals have shown beneficial effects of exercise on brain plasticity and cognitive functions. In animal studies, exercise also improved AD pathology. The mechanisms underlying these effects of exercise seem to be associated mainly with exercise performance or cardiorespiratory fitness. In addition, exercise-induced molecules of peripheral origin seem to play an important role. Since exercise affects the whole body, there likely is no single therapeutic target that could mimic all the benefits of exercise. However, systemic strategies may be a viable means to convey broad therapeutic effects in AD patients. Here, we review the potential of physical activity and exercise training in AD prevention and treatment, shining light on recently discovered underlying mechanisms and concluding with a view on future development of exercise-free treatment strategies for AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/prevenção & controle , Animais , Cognição , Exercício Físico/psicologia , Humanos , Plasticidade Neuronal , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...