Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(4-1): 044207, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755865

RESUMO

We study the breakdown of Anderson localization in the one-dimensional nonlinear Klein-Gordon chain, a prototypical example of a disordered classical many-body system. A series of numerical works indicate that an initially localized wave packet spreads polynomially in time, while analytical studies rather suggest a much slower spreading. Here, we focus on the decorrelation time in equilibrium. On the one hand, we provide a mathematical theorem establishing that this time is larger than any inverse power law in the effective anharmonicity parameter λ, and on the other hand our numerics show that it follows a power law for a broad range of values of λ. This numerical behavior is fully consistent with the power law observed numerically in spreading experiments, and we conclude that the state-of-the-art numerics may well be unable to capture the long-time behavior of such classical disordered systems.

2.
Phys Rev Lett ; 121(14): 140601, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30339434

RESUMO

We propose a multiscale diagonalization scheme to study disordered one-dimensional chains, in particular, the transition between many-body localization (MBL) and the ergodic phase, expected to be governed by resonant spots. Our scheme focuses on the dichotomy of MBL versus validity of the eigenstate thermalization hypothesis. We show that a few natural assumptions imply that the system is localized with probability one at criticality. On the ergodic side, delocalization is induced by a quantum avalanche seeded by large ergodic spots, whose size diverges at the transition. On the MBL side, the typical localization length tends to the inverse of the maximal entropy density at the transition, but there is a divergent length scale related to the response to an inclusion of large ergodic spots. A mean-field approximation analytically illustrates these results and predicts a power-law distribution for thermal inclusions at criticality.

3.
Phys Rev E ; 97(4-1): 042116, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29758602

RESUMO

We investigate the long-time behavior of a passive particle evolving in a one-dimensional diffusive random environment, with diffusion constant D. We consider two cases: (a) The particle is pulled forward by a small external constant force and (b) there is no systematic bias. Theoretical arguments and numerical simulations provide evidence that the particle is eventually trapped by the environment. This is diagnosed in two ways: The asymptotic speed of the particle scales quadratically with the external force as it goes to zero, and the fluctuations scale diffusively in the unbiased environment, up to possible logarithmic corrections in both cases. Moreover, in the large D limit (homogenized regime), we find an important transient region giving rise to other, finite-size scalings, and we describe the crossover to the true asymptotic behavior.

4.
Phys Rev Lett ; 119(15): 150602, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29077452

RESUMO

We investigate the stability of the many-body localized phase for a system in contact with a single ergodic grain modeling a Griffiths region with low disorder. Our numerical analysis provides evidence that even a small ergodic grain consisting of only three qubits can delocalize a localized chain as soon as the localization length exceeds a critical value separating localized and extended regimes of the whole system. We present a simple theory, consistent with De Roeck and Huveneers's arguments in [Phys. Rev. B 95, 155129 (2017)PRBMDO2469-995010.1103/PhysRevB.95.155129] that assumes a system to be locally ergodic unless the local relaxation time determined by Fermi's golden rule is larger than the inverse level spacing. This theory predicts a critical value for the localization length that is perfectly consistent with our numerical calculations. We analyze in detail the behavior of local operators inside and outside the ergodic grain and find excellent agreement of numerics and theory.

5.
Phys Rev Lett ; 114(14): 140401, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910094

RESUMO

We consider disordered many-body systems with periodic time-dependent Hamiltonians in one spatial dimension. By studying the properties of the Floquet eigenstates, we identify two distinct phases: (i) a many-body localized (MBL) phase, in which almost all eigenstates have area-law entanglement entropy, and the eigenstate thermalization hypothesis (ETH) is violated, and (ii) a delocalized phase, in which eigenstates have volume-law entanglement and obey the ETH. The MBL phase exhibits logarithmic in time growth of entanglement entropy when the system is initially prepared in a product state, which distinguishes it from the delocalized phase. We propose an effective model of the MBL phase in terms of an extensive number of emergent local integrals of motion, which naturally explains the spectral and dynamical properties of this phase. Numerical data, obtained by exact diagonalization and time-evolving block decimation methods, suggest a direct transition between the two phases.

6.
Phys Rev Lett ; 115(25): 256803, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26722939

RESUMO

We derive general bounds on the linear response energy absorption rates of periodically driven many-body systems of spins or fermions on a lattice. We show that, for systems with local interactions, the energy absorption rate decays exponentially as a function of driving frequency in any number of spatial dimensions. These results imply that topological many-body states in periodically driven systems, although generally metastable, can have very long lifetimes. We discuss applications to other problems, including the decay of highly energetic excitations in cold atomic and solid-state systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...