Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 108: 104451, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648870

RESUMO

Aluminum is the third most common element on Earth´s crust and despite its wide use in our workaday life it has been associated with several health risks after overexposure. In the present study the impact of aluminum salts upon ABC transporter activity was studied in the P-GP-expressing human blood-brain barrier cell line hCMEC/D3, in MDCKII cells overexpressing BCRP and MRP2, respectively, and in freshly isolated, functionally intact kidney tubules from Atlantic killifish (Fundulus heteroclitus), which express the analog ABC transporters, P-gp, Bcrp and Mrp2. In contrast to previous findings with heavy metals salts (cadmium(II) chloride or mercury(II) chloride), which have a strong inhibitory effect on ABC transporter activity, or zinc(II) chloride and sodium arsenite, which have a stimulatory effect upon ABC transport function, the results indicate no modulatory effect of aluminum salts on the efflux activity of the human ABC transporters P-GP, BCRP and MRP2 nor on the analog transporters P-gp, Bcrp and Mrp2.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Humanos , Animais , Cães , Linhagem Celular , Transportadores de Cassetes de Ligação de ATP/metabolismo , Fundulidae , Proteína 2 Associada à Farmacorresistência Múltipla , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Alumínio/toxicidade , Células Madin Darby de Rim Canino , Proteínas de Neoplasias/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Compostos de Zinco , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos
2.
Aquat Toxicol ; 252: 106314, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36201872

RESUMO

ABC export proteins including Multidrug resistance-related protein 2 (Mrp2) serve as detoxification mechanism in renal proximal tubules due to active transport of xenobiotics and metabolic waste products into primary urine. The environmental pollutants aluminum and arsenic interfere with a multitude of regulatory mechanisms in the body and here their impact on ABC transporter function was studied. NaAsO2 but not AlCl3 rapidly stimulated Mrp2-mediated Texas Red (TR) transport in isolated renal proximal tubules from killifish, a well-established laboratory model for the determination of efflux transporter activity by utilizing fluorescent substrates for the ABC transporters of interest and confocal microscopy followed by image analysis. This observed stimulation remained unaffected by the translation inhibitor cycloheximide (CHX), but it was abrogated by antagonists and inhibitors of the endothelin receptor type B (ETB)/nitric oxide synthase (NOS)/protein kinase C (PKC) signaling pathway. NaAsO2-triggered effects were abolished as a consequence of PKCα inhibition through Gö6976 and PKCα inhibitor peptide C2-4. Phosphatidylinositol 3-kinase (PI3K) inhibitor LY 294,002 as well as the mammalian target of rapamycin (mTOR) inhibitor rapamycin suppressed NaAsO2-triggered stimulation of luminal TR transport. In addition, the stimulatory effect of NaAsO2 was abolished by GSK650394, an inhibitor of serum- and glucocorticoid-inducible kinase 1 (SGK1), which is an important downstream target. Environmentally relevant concentrations of NaAsO2 further stimulated transport function of P-glycoprotein (P-gp), Multidrug resistance-related protein 4 (Mrp4) and Breast cancer resistance protein (Bcrp) while AlCl3 was ineffective. To our knowledge, this is the first report engaging in the impact of NaAsO2 on efflux transporter signaling and it may contribute to the understanding of defense mechanisms versus this worrying pollutant.


Assuntos
Arsênio , Fundulidae , Poluentes Químicos da Água , Animais , Fundulidae/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteína Quinase C-alfa/metabolismo , Cloretos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Cloreto de Alumínio , Cicloeximida , Glucocorticoides , Arsênio/metabolismo , Proteínas de Neoplasias/metabolismo , Poluentes Químicos da Água/toxicidade , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Óxido Nítrico Sintase/metabolismo , Resíduos , Sirolimo , Mamíferos/metabolismo
3.
J Pharm Sci ; 110(9): 3103-3110, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33933436

RESUMO

Therapeutic proteins are administered by injection or infusion. After administration, the physiologic environment in the desired body compartment - fluid or tissue - can impact protein stability and lead to changes in the safety and/or efficacy profile. For example, protein aggregation and fragmentation are critical quality attributes of the drug product and can occur after administration to patients. In this context, the in vivo stability of therapeutic proteins has gained increasing attention. However, in vivo protein aggregation and fragmentation are difficult to assess and have been rarely investigated. This mini-review summarizes analytical approaches to assess the stability of therapeutic proteins using simulated physiologic conditions. Furthermore, we discuss factors potentially causing in vivo protein aggregation, precipitation, and fragmentation in complex biological fluids. Different analytical approaches are evaluated with respect to their applicability and possible shortcomings when it comes to these degradation events in biological fluids. Tracking protein stability in biological fluids typically requires purifying or labeling the protein of interest to circumvent matrix interference of biological fluids. Improved analytical methods are strongly needed to gain knowledge on in vivo protein aggregation and fragmentation. In vitro models can support the selection of lead candidates and accelerate the pre-clinical development of therapeutic proteins.


Assuntos
Preparações Farmacêuticas , Agregados Proteicos , Humanos , Estabilidade Proteica , Proteínas
4.
J Pharm Sci ; 110(6): 2386-2394, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33722546

RESUMO

Changes in the environment from the drug product to the human physiology might lead to physical and/or chemical modifications of the protein drug, such as in vivo aggregation and fragmentation. Although subcutaneous (SC) injection is a common route of administration for therapeutic proteins, knowledge on in vivo stability in the SC tissue is limited. In this study, we developed a physiologic in vitro model simulating the SC environment in patients. We assessed the stability of two monoclonal antibodies (mAbs) in four different protein-free fluids under physiologic conditions. We monitored protein stability over two weeks using a range of analytical methods, in analogy to testing purposes of a drug product. Both mAbs showed an increase of protein aggregates, fragments, and acidic species. mAb1 was consistently more stable in this in vitro model than mAb2, highlighting the importance of comparing the stability of different mAbs under physiologic conditions. Throughout the study, both mAbs were substantially less stable in bicarbonate buffers as compared to phosphate-buffered saline. In summary, our developed model was able to differentiate stability between molecules. Bicarbonate buffers were more suitable compared to phosphate-buffered saline in regards to simulating the in vivo conditions and evaluating protein liabilities.


Assuntos
Antineoplásicos Imunológicos , Preparações Farmacêuticas , Anticorpos Monoclonais , Humanos , Injeções Subcutâneas , Estabilidade Proteica
5.
J Pharm Sci ; 110(4): 1527-1532, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421437

RESUMO

The stability of therapeutic proteins can be impacted in vivo after administration, which may affect patient safety or treatment efficacy, or both. Stability testing of therapeutic proteins using models representing physiologic conditions may guide preclinical development strategy; however, to date only a few studies assessing the physical stability are available in the public domain. In this manuscript, the stability of seven fluorescently labeled monoclonal antibodies (mAbs) was evaluated in human serum and phosphate-buffered saline, two models often discussed to be representative of the situation in humans after intravenous administration. Subvisible particles were analyzed using light obscuration, flow imaging, and imaging flow cytometry. All methods showed that serum itself formed particles under in vitro conditions. Imaging flow cytometry demonstrated that mean particle size and counts of mAbs increased substantially in serum over five days; however, particle formation in phosphate-buffered saline was comparably low. Stability differences were observed across the mAbs evaluated, and imaging flow cytometry data indicated that fluorescently labeled mAbs primarily interacted with serum components. The results indicate that serum may be more suitable as in vitro model to simulate physiologic intravenous conditions in patients closely and evaluate the in vivo stability of therapeutic proteins. Fluorescence labeling and detection methods may be applied to differentiate particles containing therapeutic protein from high amounts of serum particles that form over time.


Assuntos
Anticorpos Monoclonais , Citometria de Fluxo , Humanos , Tamanho da Partícula
6.
PDA J Pharm Sci Technol ; 75(3): 245-257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33067332

RESUMO

The pharmaceutical industry has been confronted with new and complex challenges, particularly with regard to the aseptic filling of parenterals, including monoclonal antibodies and ophthalmologic drugs designed for intravitreal injections, which often require fill volumes <200 µL. In addition to intravitreal administration, microliter doses may be required for applications using highly concentrated formulations and cell and gene therapies. Many of these therapies have either a narrow or unknown therapeutic window, requiring a high degree of accuracy and precision for the filling system. This study aimed to investigate the applicability of a linear peristaltic pump as a novel and innovative filling system for the low-volume filling of parenterals, compared with the state-of-the-art filling systems that are currently used during pharmaceutical production. We characterized the working principle of the pump and evaluated its accuracy for a target fill volume of 50 µL. Our results demonstrated that the linear peristaltic pump can be used for fill volumes ranging from 12 to 420 µL. A deeper investigation was performed with the fill volume of 50 µL, because it represents a typical clinical dose of an intravitreal application. The filling accuracy was stable over an 8 h operation time, with a standard deviation of +/-4.4%. We conclude that this technology may allow the pharmaceutical industry to overcome challenges associated with the reliable filling of volumes <1 mL during aseptic filling. This technology has the potential to change aseptic filling methods by broadening the range of potential fill volumes while maintaining accuracy and precision, even when performing microliter fills.


Assuntos
Indústria Farmacêutica , Tecnologia Farmacêutica , Anticorpos Monoclonais , Composição de Medicamentos
7.
PDA J Pharm Sci Technol ; 74(6): 660-673, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32675305

RESUMO

The pharmaceutical industry is currently being confronted with new and complex challenges regarding the aseptic filling of parenterals, especially monoclonal antibodies, particularly for fill volumes <200 µL, which have become increasingly important with the increasing and continued development of intravitreal drugs and highly concentrated formulations. Not only does low-volume filling pose challenges to aseptic manufacturing, but the development of suitable in-process control to ensure reliable and robust filling processes for low-volume conditions has also been difficult. In particular, fill volumes <200 µL exceed limits of accuracy and robustness for the well-established method of gravimetric fill-volume control. Therefore, the present study aimed to evaluate and test novel sensors, which may allow the accurate and precise 100% contact-free measurement of drug-product formulations, with respect to filling volumes. These sensors were designed to be less influenced by inevitable noise factors, such as unidirectional airflow and vibrations. We designed the study using five different sensor concepts, to screen and identify suitable alternatives to gravimetric fill-volume control. The examined sensor concepts were based on airflow, capacitive pressure, light obscuration. and capacitive measurements. Our results demonstrated that all of the tested sensor types worked in the desired low-volume range of 10-150 µL and showed remarkable results, in terms of accuracy and precision, when compared with a high-precision gravimetric balance. A sensor based on capacitance measurement was identified as the most promising candidate for future sensor implementation into an aseptic filling line. This sensor design proved to be superior in terms of both sensitivity and precision compared with the other tested sensors. We concluded that this technology may allow the pharmaceutical industry to overcome existing challenges with respect to the reliable measurement of aseptic fill volumes <200 µL. This technology has the potential to fundamentally change how the pharmaceutical industry verifies fill volumes by facilitating 100% in-process control, even at high machine speeds.


Assuntos
Composição de Medicamentos/instrumentação , Indústria Farmacêutica/instrumentação , Esterilização , Anticorpos Monoclonais/análise , Calibragem , Capacitância Elétrica , Desenho de Equipamento , Pressão , Reprodutibilidade dos Testes , Tecnologia Farmacêutica/métodos , Vibração
8.
Eur J Pharm Biopharm ; 152: 193-201, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32371154

RESUMO

In recent years, the stability of biotherapeutics in vivo has received increasing attention. Assessing the stability of biotherapeutics in serum may support the selection of adequate molecule candidates. In our study, we compared the physical stability of 8 different monoclonal antibodies (mAbs) in phosphate-buffered saline (PBS) and human serum. mAbs were Alexa Fluor 488-labeled and characterized with respect to fragmentation, aggregation, and proteinaceous particle formation. Samples were analyzed using size-exclusion chromatography, light obscuration, and flow imaging. In addition, novel methods such as flow cytometry and fluorescence microscopy were applied. mAbs were selected based on their hydrophobicity and isoelectric point. All mAbs studied were inherently less stable in human serum as compared to PBS. Particle size and particle counts increased in serum over time. Interestingly, certain mAbs showed significant levels of fragmentation in serum but not in PBS. We conclude that PBS cannot replicate the physical stability measured in serum. The stability of labeled mAbs in human serum did not correlate with their hydrophobicity and isoelectric point . Serum stability significantly differed amongst the tested mAbs.


Assuntos
Anticorpos Monoclonais/química , Fosfatos/química , Solução Salina/química , Soro/química , Cromatografia em Gel/métodos , Citometria de Fluxo/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Fluorescência/métodos , Tamanho da Partícula
9.
J Pharm Sci ; 109(5): 1827-1832, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32112826

RESUMO

In recent years, an increasing number of studies assessed the stability of biotherapeutics in biological fluids. Such studies aim to simulate the conditions encountered in the human body and investigate the in vivo stability under in vitro conditions. However, on account of complexity of biological fluids, standard pharmaceutical methods are poorly suited to assess the stability of biotherapeutics. In this study, a fluorescent-labeled therapeutic immunoglobulin G (IgG) was analyzed for proteinaceous particles after mixing with human serum and after incubation at 37°C for 5 days. Samples were analyzed using standard pharmaceutical methods (light obscuration and dynamic imaging). Moreover, we developed a fluorescence microscopy method allowing to semiquantitatively detect IgG particles in serum. Several hundred IgG particles were detected after exposure to serum. Moreover, particle counts and particle size increased in serum over time. The results showed that an IgG may form particles on mixing with serum and novel methods such as fluorescence microscopy are required to gain insight on the stability of biotherapeutics in biological fluids. Furthermore, we showed distinct advantages of machine learning over traditional threshold-based methods by analyzing microscopy images. Machine learning allowed simplifying particles in regards to count, size, and shape.


Assuntos
Proteínas , Soro , Humanos , Aprendizado de Máquina , Microscopia de Fluorescência , Tamanho da Partícula
10.
Pharm Res ; 37(3): 68, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32166417

RESUMO

A manuscript version without peer-review revisions was mistakenly processed and published.

11.
Pharm Res ; 37(2): 23, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900680

RESUMO

Significant efforts are made to characterize molecular liabilities and degradation of the drug substance (DS) and drug product (DP) during various product life-cycle stages. The in vivo fate of a therapeutic protein is usually only considered in terms of pharmacokinetics (PKs) and pharmacodynamics (PDs). However, the environment in the human body differs substantially from that of the matrix (formulation) of the DP and may impact on the stability of an injected therapeutic protein. Stabilizing excipients used in protein formulations are expected to undergo more rapid distribution and dissociation in vivo, compared to a protein as a highly charged macromolecule. Thus, in vivo stability may significantly differ from shelf-life stability. In vivo degradation of the therapeutic protein may alter efficacy and/or safety characteristics such as immunogenicity. Studying the stability of a therapeutic protein in the intended body compartment can de-risk drug development in early stages of development by improving the selection of better clinical lead molecules. This review assesses the considerations when aiming to evaluate the in vivo fate of a therapeutic protein by comparing the physiology of relevant human body compartments and assessing their potential implications on the stability of a therapeutic protein. Moreover, we discuss the limitations of current experimental approaches mimicking physiologic conditions, depending on the desired route of administration, such as intravenous (IV), subcutaneous (SC), intravitreal (IVT), or intrathecal (IT) administration(s). New models more closely mimicking the relevant physiologic environment and updated analytical methods are required to understand the in vivo fate of therapeutic proteins.


Assuntos
Preparações Farmacêuticas/química , Proteínas/química , Animais , Química Farmacêutica/métodos , Estabilidade de Medicamentos , Excipientes/química , Humanos
12.
J Pharm Sci ; 109(1): 807-817, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31622600

RESUMO

Sucrose is a common cryoprotectant and lyoprotectant to stabilize labile biopharmaceuticals during freeze-drying and storage. Sucrose-based formulations require low primary drying temperatures to avoid collapse and monoclonal antibody (mAb) containing products need to be stored refrigerated. The objective of this study is to investigate different excipients enabling storage at room temperature and aggressive, shorter lyophilization cycles. We studied combinations of 2-hydroxypropyl-beta-cyclodextrin (CD), recombinant human albumin, polyvinylpyrroldione (PVP), dextran 40 kDa (Dex), and sucrose (Suc) using 2 mAbs. Samples were characterized for collapse temperature (Tc), glass transition temperature of the liquid (Tg') and freeze-dried formulation (Tg), cake appearance, residual moisture, and reconstitution time. Freeze-dried formulations were stored at 5°C, 25°C, and 40°C for up to 9 months and mAb stability was analyzed for color, turbidity, visible and sub-visible particles, and monomer content. Formulations with CD/Suc or CD/PVP/Suc were superior to pure Suc formulations for long-term storage at 40°C. When using aggressive freeze-drying cycles, these formulations were characterized by pharmaceutically elegant cakes, short reconstitution times, higher Tg', Tc, and Tg. We conclude that the addition of CD allows for shorter freeze-drying cycles with improved cake appearance and enables storage at room temperature, which might reduce costs of goods substantially.


Assuntos
Anticorpos Monoclonais , Armazenamento de Medicamentos , Imunoglobulina G , 2-Hidroxipropil-beta-Ciclodextrina/química , Anticorpos Monoclonais/química , Dextranos/química , Composição de Medicamentos , Estabilidade de Medicamentos , Excipientes/química , Liofilização , Imunoglobulina G/química , Povidona/química , Agregados Proteicos , Estabilidade Proteica , Albumina Sérica Humana/química , Sacarose/química , Fatores de Tempo , Temperatura de Transição , Vitrificação
13.
Eur J Pharm Biopharm ; 147: 45-56, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31866444

RESUMO

Freeze-drying is commonly used to improve stability of liquid formulations of labile biopharmaceuticals. Lyo- and cryoprotectants such as sucrose are traditionally utilized as excipients, but have low glass transition (Tg') and collapse temperatures (Tc). Consequently, these formulations require low primary drying temperatures making the lyophilization cycle time-consuming and costly. We investigated different dextrans (1, 40, 150, and 500 kDa) and mixtures of dextran with sucrose as alternative excipients. The influence of dextran on thermal properties, cake appearance, and other quality attributes in the solid state was studied using bovine serum albumin as model protein. Especially at higher weight ratios of dextran to sucrose, dextrans of medium to high molecular weight (MW) of 40-500 kDa showed up to 20 °C higher Tc compared to sucrose, which was reflected in elegant lyophilisates. However, this resulted in slower reconstitution times. Addition of dextran led to lower residual moisture levels and higher Tg values compared to sucrose. We confirmed the thermal properties for two monoclonal antibodies (mAb) at two weight ratios of sucrose and dextran with different MW, and tested for stability at 40 °C for 14 days. While no loss in relative potency of the antibodies was observed after storage, size exclusion chromatography and isoelectric focusing revealed a strong increase in high molecular weight species (HMWs) and acidic species, which were dependent on the MW of the dextrans. With further characterization of selected formulations (dextran 1 kDa) by boronate affinity chromatography and mass spectrometry analysis, we demonstrated that HMWs were a result of glycation by free terminal glucose of the dextran. This chemical modification was strongly reduced when adding sucrose, which protects the protein possibly by shielding its surface. Our results demonstrate that formulation scientists need to use dextrans as excipients in freeze-dried mAb formulations with caution. A binary mixture of sucrose and dextran in adequate ratio however might potentially be superior to pure sucrose formulations allowing for faster freeze-drying cycles resulting in elegant lyophilisates and good protein stability.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Dextranos/química , Excipientes/química , Soroalbumina Bovina/administração & dosagem , Anticorpos Monoclonais/química , Química Farmacêutica/métodos , Cromatografia de Afinidade , Cromatografia em Gel , Liofilização , Espectrometria de Massas , Peso Molecular , Estabilidade Proteica , Soroalbumina Bovina/química , Sacarose/química , Temperatura
14.
Pharmaceutics ; 11(11)2019 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-31744221

RESUMO

Short freeze-drying cycles for biopharmaceuticals are desirable. Formulations containing an amorphous disaccharide, such as sucrose, are prone to collapse upon aggressive primary drying at higher shelf temperature. We used 2-hydroxypropyl-betacyclodextrin (HPBCD) in combination with sucrose and polyvinylpyrrolidone (PVP) to develop an aggressive lyophilization cycle for low concentration monoclonal antibody (mAb) formulations. Glass transition temperature and collapse temperature of the formulations were determined, and increasingly aggressive cycle parameters were applied. Using a shelf temperature of +30 °C during primary drying, the concept of combining sublimation and desorption of water in a single drying step was investigated. Cake appearance was evaluated visually and by micro-computed tomography. Lyophilisates were further analyzed for reconstitution time, specific surface area, residual moisture, and glass transition temperature. We demonstrated the applicability of single-step freeze-drying, shortening the total cycle time by 50% and providing elegant lyophilisates for pure HPBCD and HPBCD/sucrose formulations. HPBCD/PVP/sucrose showed minor dents, while good mAb stability at 10 mg/mL was obtained for HPBCD/sucrose and HPBCD/PVP/sucrose when stored at 40 °C for 3 months. We conclude that HPBCD-based formulations in combination with sucrose are highly attractive, enabling aggressive, single-step freeze-drying of low concentration mAb formulations, while maintaining elegant lyophilisates and ensuring protein stability at the same time.

15.
J Pharm Sci ; 107(11): 2810-2822, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30005985

RESUMO

Pharmaceutically elegant lyophilisates are highly desirable implying a stable and robust freeze-drying process. To ensure homogenous and intact cake appearance after process scale-up and transfer, characterization of lyophilisates during formulation and cycle development is required. The present study investigates different imaging techniques to characterize lyophilisates on different levels. Cake appearance of freeze-dried bovine serum albumin formulations with different dextran/sucrose ratios was studied by visual inspection, three-dimensional laser scanning, polydimethylsiloxane embedding, scanning electron microscopy, and microcomputed tomography (µ-CT). The set of techniques allowed a holistic evaluation of external cake appearance and internal structure providing complementary information at macroscopic and microscopic scale. In comparison to state of the art technologies like visual inspection or scanning electron microscopy, three-dimensional laser scanning and µ-CT provided quantitative information allowing comparison of visual cake appearance. In particular µ-CT enables a global, qualitative, and quantitative characterization of external and internal cake structure with a single measurement detecting heterogeneities of lyophilisates. We even demonstrated the use of noninvasive µ-CT for qualitative imaging of internal cake structure through the glass vial. Providing meaningful characterization of the entire lyophilisate, µ-CT can serve as a powerful tool during development of freeze-drying cycles, process scale-up, and transfer.


Assuntos
Excipientes/química , Liofilização , Soroalbumina Bovina/química , Animais , Bovinos , Dextranos/química , Composição de Medicamentos , Liofilização/métodos , Imageamento Tridimensional/métodos , Lasers , Microscopia Eletrônica de Varredura/métodos , Porosidade , Sacarose/química , Microtomografia por Raio-X/métodos
16.
Pharm Res ; 35(7): 146, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29796727

RESUMO

PURPOSE: The proper understanding of glass delamination is important to glass manufacturers, pharmaceutical companies, and health authorities to mitigate the occurrence of glass flakes from the vial when in contact with specific drug product solutions. The surface of glass vials is altered during glass cane- and vial forming processes and is exposed to different stress conditions during drug product processing before coming in contact with the drug product solution. In this study, the impact of vial washing and depyrogenation including an evaluation of various residual water volumes on surface properties of glass vials was investigated for a defined set of vials. METHODS: 3D laser scanning microscopy was established as a new method for topographic analysis of curved surfaces of glass vials operating in high-throughput mode. A subset of vials was subsequently exposed to delamination stress testing and both the stressed solution and inner vial surface were analyzed by a panel of conventional and advanced analytical techniques including 3D laser scanning microscopy. RESULTS: The data showed that vial washing and depyrogenation strongly influenced surface properties, in particular those of uncoated vials. Surface characteristics such as pits increased depending on the process conditions, which especially applies to Expansion 33 vials. Even low residual water volumes of 50 µL after vial washing were sufficient to change the surface properties of the glass and weaken the surface in those positions prone to glass delamination. An increase in pits was related to a greater risk for glass delamination. CONCLUSIONS: Vial processing conditions need to be assessed when aiming at minimizing the glass delamination risk during parenteral product storage.


Assuntos
Descontaminação/métodos , Embalagem de Medicamentos , Vidro/química , Descontaminação/normas , Embalagem de Medicamentos/normas , Vidro/análise , Imageamento Tridimensional/métodos , Imageamento Tridimensional/normas , Microscopia Confocal/métodos , Microscopia Confocal/normas , Propriedades de Superfície
17.
Eur J Pharm Biopharm ; 125: 58-67, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29331438

RESUMO

The appropriate selection of adequate primary packaging, such as the glass vial, rubber stopper, and crimp cap for parenteral products is of high importance to ensure product stability, microbiological quality (integrity) during storage as well as patient safety. A number of issues can arise when inadequate vial material is chosen, and sole compliance to hydrolytic class I is sometimes not sufficient when choosing a glass vial. Using an appropriate pre-treatment, such as surface modification or coating of the inner vial surface after the vial forming process the glass container quality is often improved and interactions of the formulation with the surface of glass may be minimized. This study aimed to characterize the inner surface of different type I glass vials (Exp33, Exp51, Siliconized, TopLyo™ and Type I plus®) at the nanoscale level. All vials were investigated topographically by colorimetric staining and Scanning Electron Microscopy (SEM). Glass composition of the surface was studied by Time-of-Flight - Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS), and hydrophobicity/hydrophilicity of the inner surface was assessed by dye tests and surface energy measurements. All containers were studied unprocessed, as received from the vendor, i.e. in unwashed and non-depyrogenized condition. Clear differences were found between the different vial types studied. Especially glass vials without further surface modifications, like Exp33 and Exp51 vials, showed significant (I) vial-to-vial variations within one vial lot as well as (II) variations along the vertical axis of a single vial when studying topography and chemical composition. In addition, differences and heterogeneity in surface energy were found within a given tranche (circumferential direction) of Exp51 as well as Type I plus® vials. Most consistent quality was achieved with TopLyo™ vials. The present comprehensive characterization of surface properties of the different vial types may serve as basis to further guide the selection of adequate primary packaging based on the desired quality target product profile and to support studies of glass surface interactions with formulations. The proposed analytical method panel can be used for characterization of future glass vials either before delivery to the manufacturer or drug product manufacturing.


Assuntos
Embalagem de Medicamentos/métodos , Vidro/química , Soluções de Nutrição Parenteral/química , Preparações Farmacêuticas/química , Embalagem de Medicamentos/normas , Vidro/normas , Soluções de Nutrição Parenteral/normas , Preparações Farmacêuticas/normas , Propriedades de Superfície
18.
J Pharm Sci ; 107(2): 624-637, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28989023

RESUMO

Glass delamination is characterized by the dissociation of glass flakes from the glass surface. Since glass delamination is time dependent, 5 vial types were investigated to assess delamination under accelerated stress conditions published as quick tests in literature and compared to stress testing recommended per United States Pharmacopoeia <1660>. A broad panel of analytical techniques was employed to test the solution for visible/subvisible particles and leachables and characterize topography and composition of the surface. The vial types showed significant differences in surface durability when applying the same stress conditions. An increase in glass leachables and change in topography were shown for uncoated vials. An indication for an elevated delamination risk was confirmed for Expansion 33 vials only by the compiled analytical data set including particle assessment and change in elemental composition of the near glass surface investigated by dynamic secondary ion mass spectrometry. The delamination test protocols differ in test solution, handling, and time. Before choosing the most appropriate protocol to predict delamination propensity and mimic real-time conditions, long-term storage data are needed. A combination of analytical techniques to study the risk for long-term corrosion of glass is highly recommended covering the 3 aspects: visible/subvisible particle assessment, solution analysis, and surface characterization.


Assuntos
Vidro/química , Embalagem de Medicamentos/métodos , Espectrometria de Massas/métodos , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/química , Risco
19.
PDA J Pharm Sci Technol ; 71(1): 2-10, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27516487

RESUMO

Dual-chamber syringes were originally designed to separate a solid substance and its diluent. However, they can also be used to separate liquid formulations of two individual drug products, which cannot be co-formulated due to technical or regulatory issues. A liquid/liquid dual-chamber syringe can be designed to achieve homogenization and mixing of both solutions prior to administration, or it can be used to sequentially inject both solutions. While sequential injection can be easily achieved by a dual-chamber syringe with a bypass located at the needle end of the syringe barrel, mixing of the two fluids may provide more challenges. Within this study, the mixing behavior of surrogate solutions in different dual-chamber syringes is assessed. Furthermore, the influence of parameters such as injection angle, injection speed, agitation, and sample viscosity were studied. It was noted that mixing was poor for the commercial dual-chamber syringes (with a bypass designed as a longitudinal ridge) when the two liquids significantly differ in their physical properties (viscosity, density). However, an optimized dual-chamber syringe design with multiple bypass channels resulted in improved mixing of liquids. LAY ABSTRACT: Dual-chamber syringes were originally designed to separate a solid substance and its diluent. However, they can also be used to separate liquid formulations of two individual drug products. A liquid/liquid dual-chamber syringe can be designed to achieve homogenization and mixing of both solutions prior to administration, or it can be used to sequentially inject both solutions. While sequential injection can be easily achieved by a dual-chamber syringe with a bypass located at the needle end of the syringe barrel, mixing of the two fluids may provide more challenges. Within this study, the mixing behavior of surrogate solutions in different dual-chamber syringes is assessed. Furthermore, the influence of parameters such as injection angle, injection speed, agitation, and sample viscosity were studied. It was noted that mixing was poor for the commercially available dual-chamber syringes when the two liquids significantly differ in viscosity and density. However, an optimized dual-chamber syringe design resulted in improved mixing of liquids.


Assuntos
Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas , Seringas , Composição de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/instrumentação , Estabilidade de Medicamentos , Desenho de Equipamento , Cinética , Modelos Teóricos , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Solubilidade , Soluções , Viscosidade
20.
PDA J Pharm Sci Technol ; 70(6): 508-522, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27974591

RESUMO

Reconstitution time of dried products is influenced by various factors including formulation, process, and reconstitution method itself. This manuscript describes factors affecting reconstitution in a dual chamber syringe using highly concentrated human monoclonal antibody and bovine serum albumin model formulations. Freezing and drying conditions had only minor impact on the reconstitution time, whereas the primary container and thus the geometry of the lyophilization cake played a major role. Prewarmed diluent and agitation decreased reconstitution time. For effective agitation, short displacements and high agitation frequencies were found to be desirable conditions to minimize reconstitution time for a given lyophilization cake while foam formation was minimized. The article also provides general strategies (e.g., reduction of lyophilized cake density, use of an optimized fill finish process, and suitable method parameters) to reduce reconstitution time, especially for drug product presented in a dual chamber syringe configuration. LAY ABSTRACT: Dried drug products need to be reconstituted to a liquid form before being applied parenteral. Reconstitution time is an important attribute and needs to be as fast as possible in order to serve patients' compliance. Reconstitution time is influenced by various factors including formulation, process, and the reconstitution method itself. The article provides general strategies (e.g., reduction of dried drug product cake density, use of an optimized fill finish process, and suitable method parameters) to reduce reconstitution time, especially for drug product presented in a dual chamber syringe. Fast reconstitution of lyophilisates in dual chamber syringe can be achieved by a combination of optimized manufacturing procedures and clear instructions for the end-user (e.g., roll syringe between palms to warm and agitate it to accelerate reconstitution).


Assuntos
Seringas , Excipientes , Liofilização , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...