Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 113(1-3): 321-33, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22711426

RESUMO

Green leaf volatiles (GLVs) are a diverse group of fatty acid-derived compounds emitted by all plants and are involved in a wide variety of developmental and stress-related biological functions. Recently, GLV emission bursts from leaves were reported following light-dark transitions and hypothesized to be related to the stress response while acetaldehyde bursts were hypothesized to be due to the 'pyruvate overflow' mechanism. In this study, branch emissions of GLVs and a group of oxygenated metabolites (acetaldehyde, ethanol, acetic acid, and acetone) derived from the pyruvate dehydrogenase (PDH) bypass pathway were quantified from mesquite plants following light-dark transitions using a coupled GC-MS, PTR-MS, and photosynthesis system. Within the first minute after darkening following a light period, large emission bursts of both C(5) and C(6) GLVs dominated by (Z)-3-hexen-1-yl acetate together with the PDH bypass metabolites are reported for the first time. We found that branches exposed to CO(2)-free air lacked significant GLV and PDH bypass bursts while O(2)-free atmospheres eliminated the GLV burst but stimulated the PDH bypass burst. A positive relationship was observed between photosynthetic activity prior to darkening and the magnitude of the GLV and PDH bursts. Photosynthesis under (13)CO(2) resulted in bursts with extensive labeling of acetaldehyde, ethanol, and the acetate but not the C(6)-alcohol moiety of (Z)-3-hexen-1-yl acetate. Our observations are consistent with (1) the "pyruvate overflow" mechanism with a fast turnover time (<1 h) as part of the PDH bypass pathway, which may contribute to the acetyl-CoA used for the acetate moiety of (Z)-3-hexen-1-yl acetate, and (2) a pool of fatty acids with a slow turnover time (>3 h) responsible for the C(6) alcohol moiety of (Z)-3-hexen-1-yl acetate via the 13-lipoxygenase pathway. We conclude that our non-invasive method may provide a new valuable in vivo tool for studies of acetyl-CoA and fatty acid metabolism in plants at a variety of spatial scales.


Assuntos
Luz , Metaboloma , Oxigênio/metabolismo , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Prosopis/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Escuridão , Cromatografia Gasosa-Espectrometria de Massas , Metaboloma/efeitos da radiação , Folhas de Planta/efeitos da radiação , Caules de Planta/efeitos da radiação , Prosopis/efeitos da radiação , Prótons , Complexo Piruvato Desidrogenase/metabolismo , Fatores de Tempo
2.
Oecologia ; 150(3): 453-63, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16955288

RESUMO

Ongoing, widespread increases in woody plant abundance in historical grasslands and savannas (woody encroachment) likely will interact with future precipitation variability to influence seasonal patterns of carbon cycling in water-limited regions. To characterize the effects of woody encroachment on the sensitivity of ecosystem carbon exchange to seasonal rainfall in a semi-arid riparian setting we used flux-duration analysis to compare 2003-growing season NEE data from a riparian grassland and shrubland. Though less seasonally variable than the grassland, shrubland NEE was more responsive to monsoon rains than anticipated. During the 2004-growing season we measured leaf gas exchange and collected leaf tissue for delta(13)C and nitrogen content analysis periodically among three size classes of the dominant woody-plant, Prosopis velutina and the dominant understory species, Sporobolus wrightii, a C(4) bunchgrass, present at the shrubland. We observed size-class and plant functional type independent patterns of seasonal plant performance consistent with greater-than-anticipated sensitivity of NEE in the shrubland. This research highlights the complex interaction between growing-season precipitation, plant-available alluvial groundwater and woody plant abundance governing ecosystem carbon balance in this semi-arid watershed.


Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Prosopis/crescimento & desenvolvimento , Chuva , Análise de Variância , Arizona , Isótopos de Carbono/análise , Nitrogênio/análise , Folhas de Planta/metabolismo , Poaceae/química , Poaceae/crescimento & desenvolvimento , Prosopis/química
3.
New Phytol ; 170(4): 849-60, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16684243

RESUMO

The influences of prior monsoon-season drought (PMSD) and the seasonal timing of episodic rainfall ('pulses') on carbon and water exchange in water-limited ecosystems are poorly quantified. *In the present study, we estimated net ecosystem exchange of CO(2) (NEE) and evapotranspiration (ET) before, and for 15 d following, experimental irrigation in a semi-arid grassland during June and August 2003. Rainout shelters near Tucson, Arizona, USA, were positioned on contrasting soils (clay and sand) and planted with native (Heteropogon contortus) or non-native invasive (Eragrostis lehmanniana) C4 bunchgrasses. Plots received increased ('wet') or decreased ('dry') monsoon-season (July-September) rainfall during 2002 and 2003. Following a June 2003 39-mm pulse, species treatments had similar NEE and ET dynamics including 15-d integrated NEE (NEE(pulse)). Contrary to predictions, PMSD increased net C uptake during June in plots of both species. Greater flux rates after an August 2003 39-mm pulse reflected biotic activity associated with the North American Monsoon. Furthermore, August NEE(pulse) and ecosystem pulse-use efficiency (PUE(e) = NEE(pulse)/ET(pulse)) was greatest in Heteropogon plots. PMSD and rainfall seasonal timing may interact with bunchgrass invasions to alter NEE and ET dynamics with consequences for PUE(e) in water-limited ecosystems.


Assuntos
Carbono/metabolismo , Ecossistema , Poaceae/metabolismo , Chuva , Estações do Ano , Água/metabolismo , Arizona , Dióxido de Carbono/metabolismo , Clima , Interpretação Estatística de Dados , Eragrostis/metabolismo , Transpiração Vegetal/fisiologia
4.
Oecologia ; 134(4): 537-46, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12647126

RESUMO

We evaluated the hypothesis that CO(2) uptake by a subalpine, coniferous forest is limited by cool temperature during the growing season. Using the eddy covariance approach we conducted observations of net ecosystem CO(2) exchange (NEE) across two growing seasons. When pooled for the entire growing season during both years, light-saturated net ecosystem CO(2) exchange (NEE(sat)) exhibited a temperature optimum within the range 7-12 degrees C. Ecosystem respiration rate ( R(e)), calculated as the y-intercept of the NEE versus photosynthetic photon flux density (PPFD) relationship, increased with increasing temperature, causing a 15% reduction in net CO(2) uptake capacity for this ecosystem as temperatures increased from typical early season temperatures of 7 degrees C to typical mid-season temperatures of 18 degrees C. The ecosystem quantum yield and the ecosystem PPFD compensation point, which are measures of light-utilization efficiency, were highest during the cool temperatures of the early season, and decreased later in the season at higher temperatures. Branch-level measurements revealed that net photosynthesis in all three of the dominant conifer tree species exhibited a temperature optimum near 10 degrees C early in the season and 15 degrees C later in the season. Using path analysis, we statistically isolated temperature as a seasonal variable, and identified the dynamic role that temperature exhibits in controlling ecosystem fluxes early and late in the season. During the spring, an increase in temperature has a positive effect on NEE, because daytime temperatures progress from near freezing to near the photosynthetic temperature optimum, and R(e )values remain low. During the middle of the summer an increase in temperature has a negative effect on NEE, because inhibition of net photosynthesis and increases in R(e). When taken together, the results demonstrate that in this high-elevation forest ecosystem CO(2) uptake is not limited by cool-temperature constraints on photosynthetic processes during the growing-season, as suggested by some previous ecophysiological studies at the branch and needle levels. Rather, it is warm temperatures in the mid-summer, and their effect on ecosystem respiration, that cause the greatest reduction in the potential for forest carbon sequestration.


Assuntos
Altitude , Dióxido de Carbono/análise , Temperatura , Traqueófitas , Árvores , Dióxido de Carbono/metabolismo , Ecossistema , Monitoramento Ambiental , Fotossíntese , Estações do Ano
5.
Nature ; 408(6808): 79-82, 2000 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-11081510

RESUMO

Arid ecosystems, which occupy about 20% of the earth's terrestrial surface area, have been predicted to be one of the most responsive ecosystem types to elevated atmospheric CO2 and associated global climate change. Here we show, using free-air CO2 enrichment (FACE) technology in an intact Mojave Desert ecosystem, that new shoot production of a dominant perennial shrub is doubled by a 50% increase in atmospheric CO2 concentration in a high rainfall year. However, elevated CO2 does not enhance production in a drought year. We also found that above-ground production and seed rain of an invasive annual grass increases more at elevated CO2 than in several species of native annuals. Consequently, elevated CO2 might enhance the long-term success and dominance of exotic annual grasses in the region. This shift in species composition in favour of exotic annual grasses, driven by global change, has the potential to accelerate the fire cycle, reduce biodiversity and alter ecosystem function in the deserts of western North America.


Assuntos
Dióxido de Carbono , Clima Desértico , Ecossistema , Nevada , Plantas , Poaceae , Rosales
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...