Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Cell Biol ; 34(3): 255-267, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37648593

RESUMO

The multistep process of in vivo reprogramming, mediated by the transcription factors (TFs) Oct4, Sox2, Klf4, and c-Myc (OSKM), holds great promise for the development of rejuvenating and regenerative strategies. However, most of the approaches developed so far are accompanied by a persistent risk of tumorigenicity. Here, we review the groundbreaking effects of in vivo reprogramming with a particular focus on rejuvenation and regeneration. We discuss how the activity of pioneer TFs generates cellular plasticity that may be critical for inducing not only reprogramming and regeneration, but also cancer initiation. Finally, we highlight how a better understanding of the uncoupled control of cellular identity, plasticity, and aging during reprogramming might pave the way to the development of rejuvenating/regenerating strategies in a nontumorigenic manner.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Reprogramação Celular/genética , Plasticidade Celular , Rejuvenescimento , Fatores de Transcrição/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição SOXB1/genética
2.
Cells ; 12(17)2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37681879

RESUMO

It is widely accepted that cell fate determination in the cochlea is tightly controlled by different transcription factors (TFs) that remain to be fully defined. Here, we show that Sox9, initially expressed in the entire sensory epithelium of the cochlea, progressively disappears from differentiating hair cells (HCs) and is finally restricted to supporting cells (SCs). By performing ex vivo electroporation of E13.5-E14.5 cochleae, we demonstrate that maintenance of Sox9 expression in the progenitors committed to HC fate blocks their differentiation, even if co-expressed with Atoh1, a transcription factor necessary and sufficient to form HC. Sox9 inhibits Atoh1 transcriptional activity by upregulating Hey1 and HeyL antagonists, and genetic ablation of these genes induces extra HCs along the cochlea. Although Sox9 suppression from sensory progenitors ex vivo leads to a modest increase in the number of HCs, it is not sufficient in vivo to induce supernumerary HC production in an inducible Sox9 knockout model. Taken together, these data show that Sox9 is downregulated from nascent HCs to allow the unfolding of their differentiation program. This may be critical for future strategies to promote fully mature HC formation in regeneration approaches.


Assuntos
Cóclea , Células Ciliadas Auditivas , Epitélio , Diferenciação Celular , Eletroporação
3.
Nat Commun ; 14(1): 68, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604434

RESUMO

A challenge during development is to ensure lineage segregation while preserving plasticity. Using pluripotency progression as a paradigm, we review how developmental transitions are coordinated by redeployments, rather than global resettings, of cellular components. We highlight how changes in response to extrinsic cues (FGF, WNT, Activin/Nodal, Netrin-1), context- and stoichiometry-dependent action of transcription factors (Oct4, Nanog) and reconfigurations of epigenetic regulators (enhancers, promoters, TrxG, PRC) may confer robustness to naïve to primed pluripotency transition. We propose the notion of Molecular Versatility to regroup mechanisms by which molecules are repurposed to exert different, sometimes opposite, functions in close stem cell configurations.


Assuntos
Células-Tronco Pluripotentes , Fatores de Transcrição/genética , Diferenciação Celular , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero
4.
Nat Commun ; 14(1): 356, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690642

RESUMO

Embryonic stem cell (ESC) fate decisions are regulated by a complex circuitry that coordinates gene expression at multiple levels from chromatin to mRNA processing. Recently, ribosome biogenesis and translation have emerged as key pathways that efficiently control stem cell homeostasis, yet the underlying molecular mechanisms remain largely unknown. Here, we identified RSL24D1 as highly expressed in both mouse and human pluripotent stem cells. RSL24D1 is associated with nuclear pre-ribosomes and is required for the biogenesis of 60S subunits in mouse ESCs. Interestingly, RSL24D1 depletion significantly impairs global translation, particularly of key pluripotency factors and of components from the Polycomb Repressive Complex 2 (PRC2). While having a moderate impact on differentiation, RSL24D1 depletion significantly alters ESC self-renewal and lineage commitment choices. Altogether, these results demonstrate that RSL24D1-dependant ribosome biogenesis is both required to sustain the expression of pluripotent transcriptional programs and to silence PRC2-regulated developmental programs, which concertedly dictate ESC homeostasis.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Pluripotentes , Humanos , Animais , Camundongos , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular/genética , Complexo Repressor Polycomb 2/metabolismo
5.
Nat Cell Biol ; 22(4): 389-400, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32231305

RESUMO

In mouse embryonic stem cells (mESCs), chemical blockade of Gsk3α/ß and Mek1/2 (2i) instructs a self-renewing ground state whose endogenous inducers are unknown. Here we show that the axon guidance cue Netrin-1 promotes naive pluripotency by triggering profound signalling, transcriptomic and epigenetic changes in mESCs. Furthermore, we demonstrate that Netrin-1 can substitute for blockade of Gsk3α/ß and Mek1/2 to sustain self-renewal of mESCs in combination with leukaemia inhibitory factor and regulates the formation of the mouse pluripotent blastocyst. Mechanistically, we reveal how Netrin-1 and the balance of its receptors Neo1 and Unc5B co-regulate Wnt and MAPK pathways in both mouse and human ESCs. Netrin-1 induces Fak kinase to inactivate Gsk3α/ß and stabilize ß-catenin while increasing the phosphatase activity of a Ppp2r2c-containing Pp2a complex to reduce Erk1/2 activity. Collectively, this work identifies Netrin-1 as a regulator of pluripotency and reveals that it mediates different effects in mESCs depending on its receptor dosage, opening perspectives for balancing self-renewal and lineage commitment.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Receptores de Netrina/genética , Netrina-1/genética , Receptores de Superfície Celular/genética , Via de Sinalização Wnt/genética , Animais , Linhagem Celular , Embrião de Mamíferos , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos SCID , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Netrina/metabolismo , Netrina-1/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Receptores de Superfície Celular/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
6.
Cell Death Differ ; 24(12): 2054-2065, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28777373

RESUMO

MicroRNAs are important regulators of gene expression and are involved in cellular processes such as proliferation or differentiation, particularly during development of numerous organs including the inner ear. However, it remains unknown if miRNAs are required during the earliest stages of otocyst and cochlear duct development. Here, we report that a conditional loss of Dicer expression in the otocyst impairs the early development of the inner ear as a result of the accumulation of DNA damage that trigger p53-mediated apoptosis. Moreover, cochlear progenitors in the prosensory domain do not exit the cell cycle. Our unbiased approach identified ItgA3 as a target of miR-183, which are both enriched in the otic vesicle. We observed that the repression of integrin alpha 3 by miR-183 controls cell proliferation in the developing cochlea. Collectively, our results reveal that Dicer and miRNAs play essential roles in the regulation of early inner ear development.


Assuntos
Orelha Interna/embriologia , Integrina alfa3/fisiologia , MicroRNAs/fisiologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Cóclea/citologia , Cóclea/embriologia , RNA Helicases DEAD-box/genética , Feminino , Camundongos , Camundongos Knockout , Gravidez , Ribonuclease III/genética , Transdução de Sinais
7.
Cell Rep ; 13(1): 31-42, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26387953

RESUMO

The organ of Corti, the auditory organ of the mammalian inner ear, contains sensory hair cells and supporting cells that arise from a common sensory progenitor. The molecular bases allowing the specification of these progenitors remain elusive. In the present study, by combining microarray analyses with conditional deletion of Dicer in the developing inner ear, we identified that miR-124 controls cell fate in the developing organ of Corti. By targeting secreted frizzled-related protein 4 (Sfrp4) and Sfrp5, two inhibitors of the Wnt pathway, we showed that miR-124 controls the ß-catenin-dependent and also the PCP-related non-canonical Wnt pathways that contribute to HC differentiation and polarization in the organ of Corti. Thus, our work emphasizes the importance of miR-124 as an epigenetic safeguard that fine-tunes the expression of genes critical for cell patterning during cochlear differentiation.


Assuntos
Células Ciliadas Auditivas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Células Labirínticas de Suporte/metabolismo , MicroRNAs/genética , Proteínas Proto-Oncogênicas/genética , beta Catenina/genética , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sequência de Bases , Diferenciação Celular/genética , Polaridade Celular , RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/genética , Embrião de Mamíferos , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células Labirínticas de Suporte/citologia , Camundongos , MicroRNAs/metabolismo , Dados de Sequência Molecular , Organogênese/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ribonuclease III/deficiência , Ribonuclease III/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
8.
PLoS One ; 7(6): e38264, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22737209

RESUMO

Leukodystrophies (LD) are rare inherited disorders that primarily affect the white matter (WM) of the central nervous system. The large heterogeneity of LD results from the diversity of the genetically determined defects that interfere with glial cells functions. Astrocytes have been identified as the primary target of LD with cystic myelin breakdown including those related to mutations in the ubiquitous translation initiation factor eIF2B. EIF2B is involved in global protein synthesis and its regulation under normal and stress conditions. Little is known about how eIF2B mutations have a major effect on WM. We performed a transcriptomic analysis using fibroblasts of 10 eIF2B-mutated patients with a severe phenotype and 10 age matched patients with other types of LD in comparison to control fibroblasts. ANOVA was used to identify genes that were statistically significantly differentially expressed at basal state and after ER-stress. The pattern of differentially expressed genes between basal state and ER-stress did not differ significantly among each of the three conditions. However, 70 genes were specifically differentially expressed in eIF2B-mutated fibroblasts whatever the stress conditions tested compared to controls, 96% being under-expressed. Most of these genes were involved in mRNA regulation and mitochondrial metabolism. The 13 most representative genes, including genes belonging to the Heterogeneous Nuclear Ribonucleoprotein (HNRNP) family, described as regulators of splicing events and stability of mRNA, were dysregulated during the development of eIF2B-mutated brains. HNRNPH1, F and C mRNA were over-expressed in foetus but under-expressed in children and adult brains. The abnormal regulation of HNRNP expression in the brain of eIF2B-mutated patients was concomitant with splicing dysregulation of the main genes involved in glial maturation such as PLP1 for oligodendrocytes and GFAP in astrocytes. These findings demonstrate a developmental deregulation of splicing events in glial cells that is related to abnormal production of HNRNP, in eIF2B-mutated brains.


Assuntos
Fator de Iniciação 2B em Eucariotos/genética , Regulação da Expressão Gênica , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Mutação , Animais , Biópsia , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Proteína Glial Fibrilar Ácida/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Humanos , Lactente , Masculino , Bainha de Mielina/química , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , RNA Mensageiro/metabolismo , Transcrição Gênica
9.
BMC Neurol ; 10: 94, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20958979

RESUMO

BACKGROUND: Eukaryotic translation initiation factor 2B (eIF2B), a guanine nucleotide exchange factor (GEF) and a key regulator of translation initiation under normal and stress conditions, causes an autosomal recessive leukodystrophy of a wide clinical spectrum. EBV-immortalised lymphocytes (EIL) from eIF2B-mutated patients exhibit a decrease in eIF2B GEF activity. eIF2B-mutated primary fibroblasts have a hyper-induction of activating transcription factor 4 (ATF4) which is involved in the protective unfolded protein response (UPR), also known as the ER-stress response. We tested the hypothesis that EIL from eIF2B-mutated patients also exhibit a heightened ER-stress response. METHODS: We used thapsigargin as an ER-stress agent and looked at polysomal profiles, rate of protein synthesis, translational activation of ATF4, and transcriptional induction of stress-specific mRNAs (ATF4, CHOP, ASNS, GRP78) in normal and eIF2B-mutated EIL. We also compared the level of stress-specific mRNAs between EIL and primary lymphocytes (PL). RESULTS: Despite the low eIF2B GEF activity in the 12 eIF2B-mutated EIL cell lines tested (range 40-70% of normal), these cell lines did not differ from normal EIL in their ATF4-mediated ER-stress response. The absence of hyper-induction of ATF4-mediated ER-stress response in eIF2B-mutated EIL in contrast to primary fibroblasts is not related to their transformation by EBV. Indeed, PL exhibited a higher induction of the stress-specific mRNAs in comparison to EIL, but no hyper-induction of the UPR was noticed in the eIF2B-mutated cell lines in comparison to controls. CONCLUSIONS: Taken together with work of others, our results demonstrate the absence of a major difference in ER-stress response between controls and eIF2B-mutated cells. Therefore, components of the ER-stress response cannot be used as discriminatory markers in eIF2B-related disorders.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2B em Eucariotos/metabolismo , Leucoencefalopatias/metabolismo , Linfócitos/metabolismo , Estresse Fisiológico/fisiologia , Fator 4 Ativador da Transcrição/genética , Adolescente , Western Blotting , Linhagem Celular , Criança , Pré-Escolar , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/genética , Chaperona BiP do Retículo Endoplasmático , Inibidores Enzimáticos/toxicidade , Fator de Iniciação 2B em Eucariotos/genética , Feminino , Humanos , Lactente , Leucoencefalopatias/genética , Masculino , Mutação , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tapsigargina/toxicidade
10.
PLoS One ; 4(12): e8318, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20016818

RESUMO

BACKGROUND: In recent years, the phenotypes of leukodystrophies linked to mutations in the eukaryotic initiation factor 2B genes have been extended, classically called CACH/VWM (Childhood ataxia with cntral hypomyélination/vanishing white matter disorder). The large clinical spectrum observed from the more severe antenatal forms responsible for fetal death to milder adult forms with an onset after 16 years old and restricted to slow cognitive impairment have lead to the concept of eIF2B-related disorders. The typical MRI pattern with a diffuse CSF-like aspect of the cerebral white matter can lack particularly in the adult forms whereas an increasing number of patients with clinical and MRI criteria for CACH/VWM disease but without eIF2B mutations are found. Then we propose the use of biochemical markers to help in this difficult diagnosis. The biochemical diagnosis of eIF2B-related disorder is difficult as no marker, except the recently described asialotransferrin/transferrin ratio measured in cerebrospinal fluid, has been proposed and validated until now. Decreased eIF2B GEF activity has been previously reported in lymphoblastoid cell lines from 30 eIF2B-mutated patients. Our objective was to evaluate further the utility of this marker and to validate eIF2B GEF activity in a larger cohort as a specific diagnostic test for eIF2B-related disorders. METHODOLOGY/PRINCIPAL FINDINGS: We performed eIF2B GEF activity assays in cells from 63 patients presenting with different clinical forms and eIF2B mutations in comparison to controls but also to patients with defined leukodystrophies or CACH/VWM-like diseases without eIF2B mutations. We found a significant decrease of GEF activity in cells from eIF2B-mutated patients with 100% specificity and 89% sensitivity when the activity threshold was set at < or =77.5%. CONCLUSION: These results validate the measurement of eIF2B GEF activity in patients' transformed-lymphocytes as an important tool for the diagnosis of eIF2B-related disorders.


Assuntos
Fator de Iniciação 2B em Eucariotos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico , Adolescente , Adulto , Idade de Início , Envelhecimento/patologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Fator de Iniciação 2B em Eucariotos/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Humanos , Lactente , Linfócitos/metabolismo , Pessoa de Meia-Idade , Mutação/genética , Curva ROC , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...