Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gait Posture ; 113: 67-74, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38850852

RESUMO

INTRODUCTION: Foot and ankle alignment plays a pivotal role in human gait and posture. Traditional assessment methods, relying on 2D standing radiographs, present limitations in capturing the dynamic 3D nature of foot alignment during weight-bearing and are prone to observer error. This study aims to integrate weight-bearing CT (WBCT) imaging and advanced deep learning (DL) techniques to automate and enhance quantification of the 3D foot and ankle alignment. METHODS: Thirty-two patients who underwent a WBCT of the foot and ankle were retrospectively included. After training and validation of a 3D nnU-Net model on 45 cases to automate the segmentation into bony models, 35 clinically relevant 3D measurements were automatically computed using a custom-made tool. Automated measurements were assessed for accuracy against manual measurements, while the latter were analyzed for inter-observer reliability. RESULTS: DL-segmentation results showed a mean dice coefficient of 0.95 and mean Hausdorff distance of 1.41 mm. A good to excellent reliability and mean prediction error of under 2 degrees was found for all angles except the talonavicular coverage angle and distal metatarsal articular angle. CONCLUSION: In summary, this study introduces a fully automated framework for quantifying foot and ankle alignment, showcasing reliability comparable to current clinical practice measurements. This operator-friendly and time-efficient tool holds promise for implementation in clinical settings, benefiting both radiologists and surgeons. Future studies are encouraged to assess the tool's impact on streamlining image assessment workflows in a clinical environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...