Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(38): 89293-89310, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37452243

RESUMO

The dyke system plays a vital role in cultivating rice intensively in the Vietnamese Mekong Delta, which protects rice paddy fields from annual floods. This study aimed to examine whether the full-dyke system (FD, which restricts water exchange for a long time) can cause degradation of surface water quality and reduction in benthic invertebrate biodiversity. The surface water quality and benthic invertebrate community were compared between the FD and semi-dyke systems (SD, which permits water exchange during flooding season) using a large number of samples collected seasonally in 2019. The results showed that the surface water quality within the FD system had significantly higher concentrations of TSS, COD, BOD5, N-NO3-, N-TKN, P-PO43-, and TP than compared to the SD system (p < 0.05), indicating greater pollution levels. The benthic invertebrate community was less diverse in the FD system than in the SD system. Only 17 species (belonging to 4 families) were detected in the FD system, and 30 species (belonging to 5 families) were detected in the SD system. The benthic invertebrate community structure changes and biodiversity loss were associated with degraded water quality. The P-PO43- and TP parameters were negatively correlated with the number of species, density, and biomass in the FD system and with the Shannon-Wiener (H') index in the SD system. In conclusion, the FD system has been degrading water quality and causing biodiversity loss.


Assuntos
Invertebrados , Rios , Humanos , Animais , Vietnã , Rios/química , Invertebrados/química , Qualidade da Água , Biodiversidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...