Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Prod Res ; : 1-10, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710024

RESUMO

It is widely recognised that orange peels contain a considerable quantity of phenolics, primarily in the form of glycosides. The process of fermentation holds potential as a viable method for extracting phenolic compounds and facilitating their biotransformation into novel metabolites. The aim of this study was to assess the enhanced release of phenolic compounds through the process of solid-state fermentation of orange peels using microorganisms. Following a 6-day incubation period, the methanol extract obtained from the sample fermented with starter Banh men exhibited the highest concentration of total phenolic compounds (17.57 ± 0.34 mg GAE/g DW) and demonstrated the most significant DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (55.03%). The Reverse Phase High Performance Liquid Chromatography (RP-HPLC) analysis revealed that the predominant phenolic compounds in all fermented samples were flavonoid aglycones, specifically naringenin, hesperetin, and nobiletin. Conversely, in the unfermented orange peels, the major compound observed was the glycoside derivative hesperidin.

2.
Protein J ; 43(2): 159-170, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485875

RESUMO

The immune system maintains constant surveillance to prevent the infiltration of both endogenous and exogenous threats into host organisms. The process is regulated by effector immune cells that combat external pathogens and regulatory immune cells that inhibit excessive internal body inflammation, ultimately establishing a state of homeostasis within the body. Disruption to this process could lead to autoimmunity, which is often associated with the malfunction of both T cells and B cells with T cells playing a more major role. A number of therapeutic mediators for autoimmune diseases are available, from conventional disease-modifying drugs to biologic agents and small molecule inhibitors. Recently, ribosomally synthesized peptides, specifically cyclotides from plants are currently attracting more attention as potential autoimmune disease therapeutics due to their decreased toxicity compared to small molecules inhibitors as well as their remarkable stability against a number of factors. This review provides a concise overview of various cyclotides exhibiting immunomodulatory properties and their potential as therapeutic interventions for autoimmune diseases.


Assuntos
Doenças Autoimunes , Ciclotídeos , Humanos , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Ciclotídeos/uso terapêutico , Ciclotídeos/química , Ciclotídeos/farmacologia , Imunossupressores/uso terapêutico , Imunossupressores/farmacologia , Animais
3.
J Agric Food Chem ; 64(49): 9263-9267, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960283

RESUMO

Rhizopus azygosporus Yuan et Jong (ATCC 48108), a starter culture for fermented soybean tempeh, produces ß-glucosidases that cleave flavonoid glycosides into aglycones during fermentation. However, recent data suggest that fermentation of a flavonoid glycoside-rich extract with this strain did not result in the production of aglycones. Thus, in this paper, flavonoid metabolism of this strain was investigated. Incubation of flavonoid aglycones, naringenin and quercetin, with R. azygosporus resulted in the production of flavonoid glucosyl-, hydroxyl-, and sulfo-conjugated derivatives. Naringenin was completely metabolized within 96 h into eriodictyol sulfate and eriodictyol glucoside, whereas quercetin was partially metabolized into quercetin glucoside, diglucoside, sulfate, and glucosyl-sulfate. Most of these metabolites were found to be excreted by the fungi into the culture medium. Toxicity analysis revealed that incubation with both quercetin and naringenin did not exert inhibitory effects on fungal growth. This study presents an interesting mechanism of fungal detoxification of flavonoids in foods.


Assuntos
Flavanonas/metabolismo , Quercetina/metabolismo , Rhizopus/metabolismo , Fermentação , Flavanonas/química , Flavonoides/química , Flavonoides/metabolismo , Estrutura Molecular , Quercetina/química , Rhizopus/química , Glycine max/microbiologia
4.
Int J Mol Sci ; 15(11): 19369-88, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25347275

RESUMO

This paper provides an overview on steered fermentation processes to release phenolic compounds from plant-based matrices, as well as on their potential application to convert phenolic compounds into unique metabolites. The ability of fermentation to improve the yield and to change the profile of phenolic compounds is mainly due to the release of bound phenolic compounds, as a consequence of the degradation of the cell wall structure by microbial enzymes produced during fermentation. Moreover, the microbial metabolism of phenolic compounds results in a large array of new metabolites through different bioconversion pathways such as glycosylation, deglycosylation, ring cleavage, methylation, glucuronidation and sulfate conjugation, depending on the microbial strains and substrates used. A whole range of metabolites is produced, however metabolic pathways related to the formation and bioactivities, and often quantification of the metabolites are highly underinvestigated. This strategy could have potential to produce extracts with a high-added value from plant-based matrices.


Assuntos
Fermentação , Flavonoides/química , Flavonoides/metabolismo , Biotransformação , Redes e Vias Metabólicas , Plantas/química , Plantas/metabolismo
5.
J Agric Food Chem ; 62(30): 7468-76, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-24992645

RESUMO

Phenolic compounds are highly present in byproducts from the cauliflower (Brassica oleracea L. var. botrytis) harvest and are thus a valuable source for valorization toward phenolic-rich extracts. In this study, we aimed to optimize and characterize the release of individual phenolic compounds from outer leaves of cauliflower, using two commercially available polysaccharide-degrading enzymes, Viscozyme L and Rapidase. As major results, the optimal conditions for the enzyme treatment were: enzyme/substrate ratio of 0.2% for Viscozyme L and 0.5% for Rapidase, temperature 35 °C, and pH 4.0. Using a UPLC-HD-TOF-MS setup, the main phenolic compounds in the extracts were identified as kaempferol glycosides and their combinations with different hydroxycinnamic acids. The most abundant components were kaempferol-3-feruloyldiglucoside and kaempferol-3-glucoside (respectively, 37.8 and 58.4 mg rutin equiv/100 g dry weight). Incubation of the cauliflower outer leaves with the enzyme mixtures resulted in a significantly higher extraction yield of kaempferol-glucosides as compared to the control treatment.


Assuntos
Brassica/química , Fenóis/análise , Folhas de Planta/química , Ácidos Cumáricos/análise , Quempferóis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...