Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Phys Chem Chem Phys ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949400

RESUMO

In this study, using the tight-binding model and Green's function technique, we investigate potential electronic phase transitions in bilayer P6mmm borophene under the influence of external stimuli, including a perpendicular electric field, electron-hole coupling between sublayers (excitonic effects), and dopants. Our focus is on key electronic properties such as the band structure and density of states. Our findings reveal that the pristine lattice is metal with Dirac cones around the Fermi level, where their intersection forms a nodal line. The system undergoes transitions to a semiconducting state - elimination of nodal line - with a perpendicular electric field and a semimetallic state - transition from two Dirac cones to a single Dirac cone - with combined electric field and excitonic effects. Notably, with these, the system retains its massless Dirac-like bands characteristic at finite energy. However, introducing a dopant still leads to a metallic phase, but the Dirac-like bands become massive. Considering all these effects, the system ultimately reaches a semiconducting phase with massive Dirac-like bands. These results hold significance for optoelectronic applications.

2.
Phys Chem Chem Phys ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953345

RESUMO

This study addresses the effect of electron-phonon coupling (EPC) on the electro-optical properties of gated ß12-borophene. The focus is on how EPC influences the orbital hybridization of boron atoms, particularly within the Barisic-Labbe-Friedel-Su-Schrieffer-Heeger framework, and considers the role of gate electrodes in this process. The results reveal a redshift in the optical spectrum only when there is positive feedback from one electrode on EPC. In other configurations, except for the y-direction, a blueshift spectrum is observed. The study emphasizes the importance of tuning these spectral shifts for maximizing the performance of solar cells in converting sunlight into usable energy.

3.
Phys Chem Chem Phys ; 26(16): 12725-12737, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38616653

RESUMO

C-I bond extension and fission following ultraviolet (UV, 262 nm) photoexcitation of 2- and 3-iodothiophene is studied using ultrafast time-resolved extreme ultraviolet (XUV) ionization in conjunction with velocity map ion imaging. The photoexcited molecules and eventual I atom products are probed by site-selective ionization at the I 4d edge using intense XUV pulses, which induce multiple charges initially localized to the iodine atom. At C-I separations below the critical distance for charge transfer (CT), charge can redistribute around the molecule leading to Coulomb explosion and charged fragments with high kinetic energy. At greater C-I separations, beyond the critical distance, CT is no longer possible and the measured kinetic energies of the charged iodine atoms report on the neutral dissociation process. The time and momentum resolved measurements allow determination of the timescales and the respective product momentum and kinetic energy distributions for both isomers, which are interpreted in terms of rival 'direct' and 'indirect' dissociation pathways. The measurements are compared with a classical over the barrier model, which reveals that the onset of the indirect dissociation process is delayed by ∼1 ps relative to the direct process. The kinetics of the two processes show no discernible difference between the two parent isomers, but the branching between the direct and indirect dissociation channels and the respective product momentum distributions show isomer dependencies. The greater relative yield of indirect dissociation products from 262 nm photolysis of 3-iodothiophene (cf. 2-iodothiophene) is attributed to the different partial cross-sections for (ring-centred) π∗ ← π and (C-I bond localized) σ∗ ← (n/π) excitation in the respective parent isomers.

4.
Nanoscale Adv ; 6(4): 1193-1201, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38356616

RESUMO

The emergence of van der Waals (vdW) heterostructures, which consist of vertically stacked two-dimensional (2D) materials held together by weak vdW interactions, has introduced an innovative avenue for tailoring nanoelectronic devices. In this study, we have theoretically designed a metal/semiconductor heterostructure composed of NbS2 and Janus MoSSe, and conducted a thorough investigation of its electronic properties and the formation of contact barriers through first-principles calculations. The effects of stacking configurations and the influence of external electric fields in enhancing the tunability of the NbS2/Janus MoSSe heterostructure are also explored. Our findings demonstrate that the NbS2/MoSSe heterostructure is not only structurally and thermally stable but also exfoliable, making it a promising candidate for experimental realization. In its ground state, this heterostructure exhibits p-type Schottky contacts characterized by small Schottky barriers and low tunneling barrier resistance, showing its considerable potential for utilization in electronic devices. Additionally, our findings reveal that the electronic properties, contact barriers and contact types of the NbS2/MoSSe heterostructure can be tuned by applying electric fields. A negative electric field leads to a conversion from a p-type Schottky contact to an n-type Schottky contact, whereas a positive electric field gives rise to a transformation from a Schottky into an ohmic contact. These insights offer valuable theoretical guidance for the practical utilization of the NbS2/MoSSe heterostructure in the development of next-generation electronic and optoelectronic devices.

5.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38349638

RESUMO

The absolute photoabsorption cross sections of norbornadiene (NBD) and quadricyclane (QC), two isomers with chemical formula C7H8 that are attracting much interest for solar energy storage applications, have been measured from threshold up to 10.8 eV using the Fourier transform spectrometer at the SOLEIL synchrotron radiation facility. The absorption spectrum of NBD exhibits some sharp structure associated with transitions into Rydberg states, superimposed on several broad bands attributable to valence excitations. Sharp structure, although less pronounced, also appears in the absorption spectrum of QC. Assignments have been proposed for some of the absorption bands using calculated vertical transition energies and oscillator strengths for the electronically excited states of NBD and QC. Natural transition orbitals indicate that some of the electronically excited states in NBD have a mixed Rydberg/valence character, whereas the first ten excited singlet states in QC are all predominantly Rydberg in the vertical region. In NBD, a comparison between the vibrational structure observed in the experimental 11B1-11A1 (3sa1 ← 5b1) band and that predicted by Franck-Condon and Herzberg-Teller modeling has necessitated a revision of the band origin and of the vibrational assignments proposed previously. Similar comparisons have encouraged a revision of the adiabatic first ionization energy of NBD. Simulations of the vibrational structure due to excitation from the 5b2 orbital in QC into 3p and 3d Rydberg states have allowed tentative assignments to be proposed for the complex structure observed in the absorption bands between ∼5.4 and 7.0 eV.

6.
Langmuir ; 39(48): 17251-17260, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37972320

RESUMO

Conducting heterostructures have emerged as a promising strategy to enhance physical properties and unlock the potential application of such materials. Herein, we conduct and investigate the electronic and transport properties of the BSe/Sc2CF2 heterostructure using first-principles calculations. The BSe/Sc2CF2 heterostructure is structurally and thermodynamically stable, indicating that it can be feasible for further experiments. The BSe/Sc2CF2 heterostructure exhibits a semiconducting behavior with an indirect band gap and possesses type-II band alignment. This unique alignment promotes efficient charge separation, making it highly promising for device applications, including solar cells and photodetectors. Furthermore, type-II band alignment in the BSe/Sc2CF2 heterostructure leads to a reduced band gap compared to the individual BSe and Sc2CF2 monolayers, leading to enhanced charge carrier mobility and light absorption. Additionally, the generation of the BSe/Sc2CF2 heterostructure enhances the transport properties of the BSe and Sc2CF2 monolayers. The electric fields and strains can modify the electronic properties, thus expanding the potential application possibilities. Both the electric fields and strains can tune the band gap and lead to the type-II to type-I conversion in the BSe/Sc2CF2 heterostructure. These findings shed light on the versatile nature of the BSe/Sc2CF2 heterostructure and its potential for advanced nanoelectronic and optoelectronic devices.

7.
Cureus ; 15(9): e44670, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37799239

RESUMO

Background Mechanistic insight into the high failure rate of TOF-Cuff® (RGB Medical Devices, Madrid, Spain) measurements on the lower leg is unclear. Aims We aimed to determine whether materials applied to pseudo-skin can reduce the impedance between a model arm and TOF-Cuff® electrodes and whether a material between TOF-Cuff® electrodes and the patient's skin surface decreases the skin-TOF-Cuff® electrode impedance within the appropriate range. Methods This was a combination of an in vitro study using non-living materials and a prospective observational clinical study. Eight patients aged > 70 years who had undergone elective surgery were eligible. One of the primary outcomes was whether water, electrocardiogram (ECG) cream, or ECG gel applied on the pseudo-skin could reduce the impedance between the model arm and the TOF-Cuff® electrodes in the in vitro study. Another was whether a material between the TOF-Cuff® electrodes and the patient's skin surface decreased the skin-TOF-Cuff® electrode impedance to an appropriate level of less than 5,000 Ω in the clinical study. Results The application of water, ECG cream, and ECG gel similarly reduced the impedance values within the electrical circuit in the in vitro study. ECG cream application between the patient's skin surface and the TOF-Cuff® electrodes decreased the skin-TOF-Cuff® electrode impedance (median (interquartile range (IQR)) Ω) from 8,600 (6,450 to 9,775) to 2,000 (1,600 to 2,600) (P = 0.012) in surgical patients. Conclusion ECG cream application between the patient's skin surface and the TOF-Cuff® electrodes decreased the skin-TOF-Cuff® electrode impedance appropriately, and thus, the application can facilitate precise TOF-Cuff® measurements in patients.

8.
Nanoscale Adv ; 5(18): 4979-4985, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37705766

RESUMO

Two-dimensional (2D) metal-semiconductor heterostructures play a critical role in the development of modern electronics technology, offering a platform for tailored electronic behavior and enhanced device performance. Herein, we construct a novel 2D metal-semiconductor MoSH@MoS2 heterostructure and investigate its structures, electronic properties and contact characteristics using first-principles investigations. We find that the MoSH@MoS2 heterostructure exhibits a p-type Schottky contact, where the specific Schottky barrier height varies depending on the stacking configurations employed. Furthermore, the MoSH@MoS2 heterostructures possess low tunneling probabilities, indicating a relatively low electron transparency across all the patterns of the MoSH@MoS2 heterostructures. Interestingly, by modulating the electric field, it is possible to modify the Schottky barriers and achieve a transformation from a p-type Schottky contact into an n-type Schottky contact. Our findings pave the way for the development of advanced electronics technology based on metal-semiconductor MoSH@MoS2 heterostructures with enhanced tunability and versatility.

9.
Phys Chem Chem Phys ; 25(35): 23829-23835, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37641558

RESUMO

We theoretically study the role of adsorbed gas molecules on the electronic and optical properties of monolayer ß12-borophene with {a,b,c,d,e} atoms in its unit cell. We focus our attention on molecules NH3, NO, NO2, and CO, which provide additional states permitted by the host electrons. Utilizing the six-band tight-binding model based on an inversion symmetry (between {a,e} and {b,d} atoms) and the Kubo formalism, we survey the anisotropic electronic dispersion and the optical multi-interband spectrum produced by molecule-boron coupling. We consider the highest possibilities for the position of molecules on the boron atoms. For molecules on {a,e} atoms, the inherent metallic phase of ß12-borophene becomes electron-doped semiconducting, while for molecules on {b,d} and c atoms, the metallic phase remains unchanged. For molecules on {a,e} and {b,d} atoms, we observe a redshift (blueshift) optical spectrum for longitudinal/transverse (Hall) component, while for molecules on c atoms, we find a redshift (blueshift) optical spectrum for longitudinal (transverse/Hall) component. We expect that this study provides useful information for engineering field-effect transistor-based gas sensors.

10.
J Phys Condens Matter ; 35(43)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37467755

RESUMO

We study the transport properties of monolayers MoSi2N4, WSi2N4, and MoSi2As4in a perpendicular magnetic field. The Landau level (LL) band structures including spin and exchange field effects are derived and discussed using a low-energy effective model. We show that the LLs band structures of these materials are similar to those of phosphorene and transition-metal dichalcogenides rather than graphene or silicene. The combination of strong spin-orbit coupling and exchange fields reduces the degradation of the LLs, leading to new plateaus in the Hall conductivity and Hall resistivity and new peaks in the longitudinal conductivity and longitudinal resistivity. The effect of the exchange field, carrier density, and LLs band structure on the conductivities and resistivities have been investigated. At high temperatures, the steps in Hall conductivity and resistivity plateaus disappear and reduce to their corresponding classical forms.

11.
Phys Chem Chem Phys ; 25(12): 8779-8788, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36912122

RESUMO

Novel Janus materials have attracted broad interest due to the outstanding properties created by their out-of-plane asymmetry, with increasing theoretical exploration and more reports of successful fabrication in recent years. Here, we construct and explore the crystal structures, stabilities, electronic band structures, and transport properties - including carrier mobilities - of two-dimensional Janus MGeSiP4 (M = Ti, Zr, or Hf) monolayers based on density functional theory calculations. From the cohesive energies, elastic constants, and phonon dispersion calculations, the monolayers are confirmed to exhibit structural stability with high feasibility for experimental synthesis. All the structures are indirect band-gap semiconductors with calculated band-gap energies in the range of 0.77 eV to 1.01 eV at the HSE06 (Heyd-Scuseria-Ernzerhof) level. Interestingly, by applying external biaxial strain, a semiconductor to metal phase transition is observed for the three Janus structures. This suggests potential for promising applications in optoelectronic and electromechanical devices. Notably, the MGeSiP4 monolayers show directionally anisotropic carrier mobility with a high electron mobility of up to 2.72 × 103 cm2 V-1 s-1 for the ZrGeSiP4 monolayer, indicating advantages for applications in electronic devices. Hence, the presented results reveal the novel properties of the 2D Janus MGeSiP4 monolayers and demonstrate their great potential applications in nanoelectronic and/or optoelectronic devices. This investigation could stimulate further theoretical and experimental studies on these excellent materials and motivate further explorations of new members of this 2D Janus family.

12.
Phys Chem Chem Phys ; 24(27): 16512-16521, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35781308

RESUMO

We discuss and examine the stability, electronic properties, and transport characteristics of asymmetric monolayers XWGeN2 (X = O, S, Se, Te) using ab initio density functional theory. All four monolayers of quintuple-layer atomic Janus XWGeN2 are predicted to be stable and they are all indirect semiconductors in the ground state. When the spin-orbit coupling (SOC) is included, a large spin splitting at the K point is found in XWGeN2 monolayers, particularly, a giant Rashba-type spin splitting is observed around the Γ point in three structures SWGeN2, SeWGeN2, and TeWGeN2. The Rashba parameters in these structures are directionally isotropic along the high-symmetry directions Γ-K and Γ-M and the Rashba constant αR increases as the X element moves from S to Te. TeWGeN2 has the largest Rashba energy up to 37.4 meV (36.6 meV) in the Γ-K (Γ-M) direction. Via the deformation potential method, we calculate the carrier mobility of all four XWGeN2 monolayers. It is found that the electron mobilities of OWGeN2 and SWGeN2 monolayers exceed 200 cm2 V-1 s-1, which are suitable for applications in nanoelectronic devices.

13.
J Phys Condens Matter ; 34(31)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35636387

RESUMO

We present a theory of phonon-drag thermopower,Sxxg, in MoS2monolayer at a low-temperature regime in the presence of a quantizing magnetic fieldB. Our calculations forSxxgconsider the electron-acoustic phonon interaction via deformation potential (DP) and piezoelectric (PE) couplings for longitudinal (LA) and transverse (TA) phonon modes. The unscreened TA-DP is found to dominateSxxgover other mechanisms. TheSxxgis found to oscillate with the magnetic field where the lifting effect of the valley and spin degeneracies in MoS2monolayer has been clearly observed. An enhancedSxxgwith a peak value of∼1mV K-1at aboutT = 10 K is predicted, which is closer to the zero field experimental observation. In the Bloch-Grüneisen regime the temperature dependence ofSxxggives the power-lawSxxg∝Tδe, whereδevaries marginally around 3 and 5 for unscreened and screened couplings, respectively. In addition,Sxxgis smaller for larger electron densityne. The power factor PF is found to increase with temperatureT, decrease withne, and oscillate withB. The prediction of an increase of thermal conductivity with temperature and the magnetic field is responsible for the limit of the figure of merit (ZT). At a particular magnetic field and temperature,ZTcan be maximized by optimizing electron density. By fixingne=1012cm-2, the highestZTis found to be 0.57 atT = 5.8 K andB = 12.1 T. Our findings are compared with those in graphene and MoS2for the zero-magnetic field.

14.
J Phys Condens Matter ; 34(30)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35545080

RESUMO

We theoretically study the magneto-optical absorption coefficients (MOACs) and the refractive index changes (RICs) due to both intra- and inter-band transitions in topological insulator (TI) thin films. The interplay between Zeeman energy and hybridization contribution leads to a transition between the normal insulator phase and the TI phase. The difference in the optical response in these two phases as well as at the phase transition point has been analyzed. The influence of the electron density, magnetic field, and temperature on the MOACs and RICs in both intra- and inter-band transitions is investigated. Our results show that the electron density affects directly the threshold energy. At a finite temperature, the thermal excitation causes the triggering of some new transitions which do not appear atT= 0 K. Evidence of the half-peak feature of the first inter-band transition is also found in TI thin films.

15.
RSC Adv ; 12(21): 12971-12977, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35497018

RESUMO

Due to the broken vertical symmetry, the Janus material possesses many extraordinary physico-chemical and mechanical properties that cannot be found in original symmetric materials. In this paper, we study in detail the structural, electronic, and transport properties of 1T Janus PdXO monolayers (X = S, Se, Te) by means of density functional theory. PdXO monolayers are observed to be stable based on the analysis of the vibrational characteristics and molecular dynamics simulations. All three PdXO structures exhibit semiconducting characteristics with indirect bandgap based on evaluations with hybrid functional Heyd-Scuseria-Ernzerhof (HSE06). The influences of the spin-orbit coupling (SOC) on the band diagram of PdXO are strong. Particularly, when the SOC is included, PdTeO is calculated to be metallic by the HSE06+SOC approach. With high electron mobility, Janus PdXO structures have good potential for applications in future nanodevices.

16.
RSC Adv ; 12(13): 7973-7979, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35424776

RESUMO

In this paper, the structural, electronic, and transport properties of Janus GaInX3 (X = S, Se, Te) single-layers are investigated by a first-principles calculations. All three structures of GaInX3 are examined to be stable based on the analysis of their phonon dispersions, cohesive energy, and Born's criteria for mechanical stability. At the ground state, The Janus GaInX3 is a semiconductor in which its bandgap decreases as the chalcogen element X moves from S to Te. Due to the vertical asymmetric structure, a difference in the vacuum level between the two surfaces of GaInX3 is found, leading to work functions on the two sides being different. The Janus GaInX3 exhibit high directional isotropic transport characteristics. Particularly, GaInX3 single-layers have high electron mobility, which could make them potential materials for applications in electronic nanodevices.

17.
Rev Fr Allergol (2009) ; 62(4): 431-434, 2022 May.
Artigo em Francês | MEDLINE | ID: mdl-34484471

RESUMO

Vaccination is the most efficient way to fight the Covid epidemic. However, suspicion of severe hypersensitivity to PEG (PolyEthylen Glycol) usually constitutes a vaccine contraindication. We report the case of a patient with a proven allergy to PEG and skin sensitization to the COMIRNATY vaccine (PEG in its composition). He was able to benefit from the vaccine under the 5-step desensitization protocol. Conclusions: Specific allergological management should be offered to patients suspected of severe hypersensitivity to PEG and other vaccine excipients. We propose a solution for Comirnaty administration for patients with a proven severe allergy to PEG.

18.
J Phys Condens Matter ; 34(4)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34670205

RESUMO

Two-dimensional Janus monolayers have outstanding electronic and transport properties due to their asymmetric atomic structures. In the present work, we systematically study the structural, electronic, and transport properties of the Janus GaInX2(X= S, Se, Te) monolayers by using the first-principles calculations. The stability of the investigated monolayers is confirmed via the analysis of vibrational spectrum and molecular dynamics simulations. Our calculations demonstrate that while GaInS2and GaInSe2monolayers are direct semiconductors, GaInTe2monolayer exhibits the characteristics of an indirect semiconductor. The band gap of GaInX2decreases when the chalcogen elementXvaries from S to Te. Obtained results reveal that small spin-orbit splitting energy in the valence band is found around the Γ point of the Brillouin zone when the spin-orbit coupling is included. Interestingly, GaInS2and GaInSe2have high and directional isotropic electron mobility meanwhile the directional anisotropy of the electron mobility is found in the Janus GaInTe2monolayer. Our findings not only present superior physical properties of GaInX2monolayers but also show promising potential applications of these materials in nanoelectronic devices.

19.
J Phys Chem Lett ; 12(21): 5076-5084, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34028284

RESUMO

A van der Waals (VDW) heterostructure offers an effective strategy to create designer physical properties in vertically stacked two-dimensional (2D) materials, and offers a new paradigm in designing novel 2D heterostructure devices. In this work, we investigate the structural and electronic features of the BP/MoGe2N4 heterostructure. We show that the BP/MoGe2N4 heterostructure exists in a multiple structurally stable stacking configuration, thus revealing the experimental feasibility of fabricating such heterostructures. Electronically, the BP/MoGe2N4 heterostructure is a direct band gap semiconductor exhibiting type-II band alignment, which is highly beneficial for the spatial separation of electrons and holes. Upon forming the BP/MoGe2N4 heterostructure, the band gap of the constituent BP and MoGe2N4 monolayers are substantially reduced, thus allowing the easier creation of an electron-hole pair at a lower excitation energy. Interestingly, both the band gap and band alignment of the BP/MoGe2N4 heterostructure can be modulated by an external electric field and a vertical strain. The optical absorption of the BP/MoGe2N4 heterostructure is enhanced in both the visible-light and ultraviolet regions, thus suggesting a strong potential for solar cell application. Our findings reveal the promising potential of the BP/MoGe2N4 vdW heterostructure in high-performance optoelectronic device applications.

20.
J Phys Condens Matter ; 33(22)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33784649

RESUMO

Inspired by the successfully experimental synthesis of Janus structures recently, we systematically study the electronic, optical, and electronic transport properties of Janus monolayers In2XY(X/Y= S, Se, Te withX≠Y) in the presence of a biaxial strain and electric field using density functional theory. Monolayers In2XYare dynamically and thermally stable at room temperature. At equilibrium, both In2STe and In2SeTe are direct semiconductors while In2SSe exhibits an indirect semiconducting behavior. The strain significantly alters the electronic structure of In2XYand their photocatalytic activity. Besides, the indirect-direct gap transitions can be found due to applied strain. The effect of the electric field on optical properties of In2XYis negligible. Meanwhile, the optical absorbance intensity of the Janus In2XYmonolayers is remarkably increased by compressive strain. Also, In2XYmonolayers exhibit very low lattice thermal conductivities resulting in a high figure of meritZT, which makes them potential candidates for room-temperature thermoelectric materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...