Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 53(4): 617-32, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16602568

RESUMO

This paper reports on a novel method for quantifying the cortical activity of a patient during general anesthesia as a surrogate measure of the patient's level of consciousness. The proposed technique is based on the analysis of a single-channel (frontal) electroencephalogram (EEG) signal using stationary wavelet transform (SWT). The wavelet coefficients calculated from the EEG are pooled into a statistical representation, which is then compared to two well-defined states: the awake state with normal EEG activity, and the isoelectric state with maximal cortical depression. The resulting index, referred to as the wavelet-based anesthetic value for central nervous system monitoring (WAV(CNS)), quantifies the depth of consciousness between these two extremes. To validate the proposed technique, we present a clinical study which explores the advantages of the WAV(CNS) in comparison with the BIS monitor (Aspect Medical Systems, MA), currently a reference in consciousness monitoring. Results show that the WAV(CNS) and BIS are well correlated (r = 0.969) during periods of steady-state despite fundamental algorithmic differences. However, in terms of dynamic behavior, the WAV(CNS) offers faster tracking of transitory changes at induction and emergence, with an average lead of 15-30 s. Furthermore, and conversely to the BIS, the WAV(CNS) regains its preinduction baseline value when patients are responding to verbal command after emergence from anesthesia. We conclude that the proposed analysis technique is an attractive alternative to BIS monitoring. In addition, we show that the WAV(CNS) dynamics can be modeled as a linear time invariant transfer function. This index is, therefore, well suited for use as a feedback sensor in advisory systems, closed-loop control schemes, and for the identification of the pharmacodynamic models of anesthetic drugs.


Assuntos
Algoritmos , Anestesia Geral/métodos , Anestésicos Gerais/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Monitorização Intraoperatória/métodos , Adulto , Estado de Consciência/efeitos dos fármacos , Estado de Consciência/fisiologia , Diagnóstico por Computador/métodos , Quimioterapia Assistida por Computador/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
Artigo em Inglês | MEDLINE | ID: mdl-17271795

RESUMO

A major challenge faced when designing controllers to automate anesthetic drug delivery is the large variability that exists between and within patients. This intra- and inter-patient variability have been reported to lead to instability. Hence, defining and quantifying uncertainty bounds provides a mean to validate the control design, ensure its stability and assess performance. In this work, the intra- and inter-patient variability measured from thiopental induction data is used to define uncertainty bounds. It is shown that these bounds can be reduced by up to 40% when using a patient-specific model as compared to a population-normed model. It is also shown that identifying only the overall static gain of the patient system already decreases significantly this uncertainty.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...