Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 8(4): 884-888, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28169550

RESUMO

To reveal the applicability of singlet fission processes in perovskite solar cell, we investigated electron transfer from TIPS-pentacene to CH3NH3PbI3 (MAPbI3) perovskite in film phase. Through the observation of the shorter fluorescence lifetime in TIPS-pentacene/MAPbI3 perovskite bilayer film (5 ns) compared with pristine MAPbI3 perovskite film (20 ns), we verified electron-transfer processes between TIPS-pentacene and MAPbI3 perovskite. Furthermore, the observation of singlet fission processes, a faster decay rate, TIPS-pentacene cations, and the analysis of kinetic profiles of the intensity ratio between 500 and 525 nm in the TA spectra of the TIPS-pentacene/MAPbI3 perovskite bilayer film indicate that electron transfer occurs from triplet state of TIPS-pentacene generated by singlet fission processes to MAPbI3 perovskite conduction band. We believe that our results can provide useful information on the design of solar cells sensitized by singlet fission processes and pave the way for new types of perovskite solar cells.

2.
Angew Chem Int Ed Engl ; 55(35): 10287-91, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27482949

RESUMO

Subporphyrinatoboron(III) (SubB) sensitizers were synthesized for use in dye-sensitized solar cells (DSSCs). The prototype, which comprises a sterically demanding 3,5-di-tert-butylphenyl scaffold, a meso-ethynylphenyl spacer, and a cyanoacrylic acid anchoring group, achieved an open-circuit voltage VOC of 836 mV, short-circuit current density JSC of 15.3 mA cm(-2) , fill factor of 0.786, and a photon-to-current conversion efficiency of 10.1 %. Such astonishing figures suggest that a bright future lies ahead for SubB in the realm of DSSCs.

3.
ChemSusChem ; 8(17): 2967-77, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25755085

RESUMO

A series of new ß-functionalized push-pull-structured porphyrin dyes were synthesized so as to investigate the effect of the π-conjugated spacer on the performance of dye-sensitized solar cells (DSSCs). Suzuki- and Heck-type palladium-catalyzed coupling methodologies were used to obtain various ß-functionalized porphyrins and ß-benzoic acid (ZnPHn) and ß-vinylbenzoic acid (ZnPVn) derivatives from ß-borylated porphyrin precursors. Photophysical studies of the resulting porphyrins revealed a clear dependence on the nature of the ß linker. In particular, it was found that a ß-vinylene linkage perturbs the electronic structure of the porphyrin core; this is less true for a ß-phenyl linkage. Theoretical analyses provided support for the intrinsic intramolecular charge-transfer character of the ß-functionalized, push-pull porphyrins of this study. The extent of charge transfer depends on the nature of the ß-conjugated linkage. The photovoltaic performances of the cells sensitized with ß-phenylenevinylene ZnPVn exhibited higher power conversion efficiency values than those bearing ß-phenyl linkages (ZnPHn). This was ascribed to differences in light-harvesting efficiency. Furthermore, compared to the use of a standard iodine-based electrolyte, the DSSC performance of cells made from the present porphyrins was improved by more than 1 % upon using a cobalt(II/III)-based electrolyte. Under standard AM 1.5 illumination, the highest efficiency, 8.2 %, was obtained by using cells made from the doubly ß-butadiene-linked porphyrin.


Assuntos
Corantes/química , Fármacos Fotossensibilizantes/química , Porfirinas/química , Energia Solar , Adsorção
4.
Sci Rep ; 4: 7353, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25483243

RESUMO

We developed a unique strategy for fabricating hierarchically structured (nanoparticles-in-beads) Zn2SnO4 beads (ZTO-Bs), which were then used to produce ternary metal oxide-based dye-sensitized solar cells (DSSCs). DSSCs were fabricated using the ZTO-Bs as the photoelectrodes and highly absorbable organic dyes as the sensitizers. The DSSCs based on the ZTO-Bs and the organic dyes (SJ-E1 and SJ-ET1) exhibited the highest performance ever reported for DSSCs with ternary metal oxide-based photoelectrodes. The optimized DSSCs exhibited a power conversion efficiency of 6.3% (V(OC) of 0.71 V, J(SC) of 12.2 mA cm(-2), FF of 0.72), which was much higher than that for DSSCs with conventional ZTO-NPs-based photoelectrodes or those based on the popular ruthenium-based dye, N719. The unique morphology of the ZTO-Bs allowed for improvements in dye absorption, light scattering, electrolyte penetration, and the charge recombination lifetime, while the organic dyes resulted in high molar absorbability.

5.
ChemSusChem ; 7(2): 501-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24347268

RESUMO

Among ternary oxides, Zn2 SnO4 (ZSO) is considered for dye-sensitized solar cells (DSSCs) because of its wide bandgap, high optical transmittance, and high electrical conductivity. However, ZSO-based DSSCs have a poor performance record owing largely to the absence of systematic efforts to enhance their performance. Herein, general strategies are proposed to improve the performance of ZSO-based DSSCs involving interfacial engineering/modification of the photoanode. A conformal ZSO thin film (blocking layer) deposited at the fluorine-doped tin oxide-electrolyte interface by pulsed laser deposition suppressed the back-electron transfer effectively while maintaining a high optical transmittance, which resulted in a 22 % improvement in the short-circuit photocurrent density. Surface modification of ZSO nanoparticles (NPs) resulted in an ultrathin ZnO shell layer, a 9 % improvement in the open-circuit voltage, and a 4 % improvement in the fill factor because of the reduced electron recombination at the ZSO NPs-electrolyte interface. The ZSO-based DSSCs exhibited a faster charge injection and electron transport than their TiO2 -based counterparts, and their superior properties were not inhibited by the ZnO shell layer, which indicates their feasibility for highly efficient DSSCs. Each interfacial engineering strategy could be applied to the ZSO-based DSSC independently to lead to an improved conversion efficiency of 6 %, a very high conversion efficiency for a non-TiO2 based DSSC.


Assuntos
Fontes de Energia Elétrica , Elétrons , Luz Solar , Compostos de Estanho/química , Eletroquímica , Óxido de Zinco/química
6.
Sci Rep ; 3: 3520, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24343425

RESUMO

We have developed highly efficient, ambient temperature, solid-state ionic conductors (SSICs) for dye-sensitized solar cells (DSSCs) by doping a molecular plastic crystal, succinonitrile (SN), with trialkyl-substituted imidazolium iodide salts. High performance SSICs with enhanced ionic conductivity (2-4 mScm⁻¹) were obtained. High performance solid-state DSSCs with power conversion efficiency of 7.8% were fabricated using our SSICs combined with unique hierarchically nanostructured TiO2 sphere (TiO2-SP) photoelectrodes; these electrodes have significant macroporosity, which assists penetration of the solid electrolyte into the electrode. The performance of our solid-state DSSCs is, to the best of our knowledge, the highest reported thus far for cells using plastic crystal-based SSICs, and is comparable to that of the state-of-the-art DSSCs which use ionic liquid type electrolytes. This report provides a logical strategy for the development of efficient plastic crystal-based SSICs for DSSCs and other electrochemical devices.

7.
ACS Appl Mater Interfaces ; 4(6): 3308-15, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22658770

RESUMO

Hierarchically structured TiO2 (HS-TiO2) was prepared on a flexible ITO-PEN (polyethylene naphthalate) substrate via electrospray deposition using a commercially available TiO2 nanocrystalline powder in order to fabricate flexible DSSCs under low-temperature (<150 °C) conditions. The cell efficiency increased when using flexible ITO-PEN substrates post-treated by either a mechanical compression treatment or a chemical sintering treatment using titanium n-tetrabutoxide (TTB). The mechanical compression treatment reduced the surface area and porosity of the HS-TiO2; however, this treatment improved the interparticle connectivity and physical adhesion between the HS-TiO2 and ITO-PEN substrate, which increased the photocurrent density of the as-pressed HS-TiO2 cells. The electron diffusion coefficients of the as-pressed HS-TiO2 improved upon compression treatment, whereas the recombination lifetimes remained unchanged. An additional chemical sintering post-treatment involving TTB was tested for its effects on DSSC efficiency. The freshly coated TiO2 submitted to TTB hydrolysis in water at 100 °C yielded an anatase phase. TTB treatment of the HS-TiO2 cell after compression treatment yielded faster electron diffusion, providing an efficiency of 5.57% under 100 mW cm(-2), AM 1.5 global illumination.


Assuntos
Energia Solar , Titânio/química , Temperatura Baixa , Corantes/química , Eletrodos , Polietilenos/química , Compostos de Estanho/química
8.
ACS Appl Mater Interfaces ; 3(7): 2719-25, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21644555

RESUMO

We report a simple method to prepare hierarchically structured TiO(2) spheres (HS-TiO(2)), using an electrostatic spray technique, that are utilized for photoelectrodes of highly efficient dye-sensitized solar cells (DSSCs). This method has an advantage to remove the synthesis steps in conventional sol-gel method to form nano-sized spheres of TiO(2) nanoclusters. The fine dispersion of commercially available nanocrystalline TiO(2) particles (P25, Degussa) in EtOH without surfactants and additives is electro-sprayed directly onto a fluorine-dopoed tin-oxide (FTO) substrate for DSSC photoelectrodes. The DSSCs of HS-TiO(2) photoelectrodes show high energy conversion efficiency over 10% under illumination of light at 100 mW cm(-2), AM1.5 global. It is concluded from frequency-dependent measurements that the faster electron diffusion coefficient and longer lifetime of HS-TiO(2) than those in nonstructured TiO(2) contribute to the enhanced efficiency in DSSCs.

9.
ACS Appl Mater Interfaces ; 3(5): 1521-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21452819

RESUMO

High-performance, room-temperature (RT), solid-state dye-sensitized solar cells (DSSCs) were fabricated using hierarchically structured TiO2 nanofiber (HS-NF) electrodes and plastic crystal (PC)-based solid-state electrolytes. The electrospun HS-NF photoelectrodes possessed a unique morphology in which submicrometer-scale core fibers are interconnected and the nanorods are dendrited onto the fibers. This nanorod-in-nanofiber morphology yielded porosity at both the mesopore and macropore level. The macropores, steming from the interfiber space, afforded high pore volumes to facilitate the infiltration of the PC electrolytes, whereas the mesoporous nanorod dendrites offered high surface area for enhanced dye loading. The solid-state DSSCs using HS-NFs (DSSC-NF) demonstrated improved power conversion efficiency (PCE) compared to conventional TiO2 nanoparticle (NP) based DSSCs (DSSC-NP). The improved performance (>2-fold) of the DSSC-NFs was due to the reduced internal series resistance (R(s)) and the enhanced charge recombination lifetime (τ(r)) determined by electrochemical impedance spectroscopy and intensity modulated photocurrent/photovoltage spectroscopy. The easy penetration of the PC electrolytes into HS-NF layers via the macropores reduces R(s) significantly, improving the fill factor (FF) of the resulting DSSC-NFs. The τ(r) difference between the DSSC-NF and DSSC-NP in the PC electrolytes was extraordinary (~14 times) compared to reported results in conventional organic liquid electrolytes. The optimized PCE of DSSC-NF using the PC electrolytes was 6.54, 7.69, and 7.93% at the light intensity of 100, 50, and 30 mW cm⁻², respectively, with increased charge collection efficiency (>40%). This is the best performing RT solid-state DSSC using a PC electrolyte. Considering the fact that most reported quasi-solid state or nonvolatile electrolytes require higher iodine contents for efficient ion transport, our HS-NFs are a promising morphology for such electrolytes that have limited ion mass transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...