Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(28): 37147-37156, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38949691

RESUMO

An essential requirement for biomedical devices is the capability of conformal adaptability on diverse irregular 3D (three-dimensional) nonflat surfaces in the human body that may be covered with liquids such as mucus or sweat. However, the development of reversible adhesive interface materials for biodevices that function on complex biological surfaces is challenging due to the wet, slippery, smooth, and curved surface properties. Herein, we present an ultra-adaptive bioadhesive for irregular 3D oral cavities covered with saliva by integrating a kirigami-metastructure and vertically self-aligning suction cups. The flared suction cup, inspired by octopus tentacles, allows adhesion to moist surfaces. Additionally, the kirigami-based auxetic metastructure with a negative Poisson's ratio relieves the stress caused by tensile strain, thereby mitigating the stress caused by curved surfaces and enabling conformal contact with the surface. As a result, the adhesive strength of the proposed auxetic adhesive is twice that of adhesives with a flat backbone on highly curved porcine palates. For potential application, the proposed auxetic adhesive is mounted on a denture and performs successfully in human subject feasibility evaluations. An integrated design of these two structures may provide functionality and potential for biomedical applications.


Assuntos
Adesivos , Octopodiformes , Adesivos/química , Animais , Humanos , Propriedades de Superfície , Suínos , Adesividade
2.
ACS Nano ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254288

RESUMO

Drug delivery through complex skin is currently being studied using various innovative structural and material strategies due to the low delivery efficiency of the multilayered stratum corneum as a barrier function. Existing microneedle-based or electrical stimulation methods have made considerable advances, but they still have technical limitations to reduce skin discomfort and increase user convenience. This work introduces the design, operation mechanism, and performance of noninvasive transdermal patch with dual-layered suction chamber cluster (d-SCC) mimicking octopus-limb capable of wet adhesion with enhanced adhesion hysteresis and physical stimulation. The d-SCC facilitates cupping-driven drug delivery through the skin with only finger pressure. Our device enables nanoscale deformation control of stratum corneum of the engaged skin, allowing for efficient transport of diverse drugs through the stratum corneum without causing skin discomfort. Compared without the cupping effect of d-SCC, applying negative pressure to the porcine, human cadaver, and artificial skin for 30 min significantly improved the penetration depth of liquid-formulated subnanoscale medicines up to 44, 56, and 139%. After removing the cups, an additional acceleration in delivery to the skin was observed. The feasibility of d-SCC was demonstrated in an atopic dermatitis-induced model with thickened stratum corneum, contributing to the normalization of immune response.

3.
Adv Sci (Weinh) ; 9(31): e2202978, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35975453

RESUMO

Bioinspired soft devices, which possess high adaptability to targeted objects, provide promising solutions for a variety of industrial and medical applications. However, achieving stable and switchable attachment to objects with curved, rough, and irregular surfaces remains difficult, particularly in dry and underwater environments. Here, a highly adaptive soft microstructured switchable adhesion device is presented, which is inspired by the geometric and material characteristics of the tiny denticles on the surface of an octopus sucker. The contact interface of the artificial octopus sucker (AOS) is imprinted with soft, microscale denticles that interact adaptably with highly rough or curved surfaces. Robust and controllable attachment of the AOS with soft microdenticles (AOS-sm) to dry and wet surfaces with diverse morphologies is achieved, allowing conformal attachment on curved and soft objects with high roughness. In addition, AOS-sms assembled with an octopus-arm-inspired soft actuator demonstrate reliable grasping and the transport of complex polyhedrons, rough objects, and soft, delicate, slippery biological samples.


Assuntos
Materiais Biomiméticos , Calcificações da Polpa Dentária , Octopodiformes , Animais , Fenômenos Físicos , Força da Mão
4.
ACS Nano ; 15(9): 14137-14148, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34425674

RESUMO

The development of bioinspired switchable adhesive systems has promising solutions in various industrial/medical applications. Switchable and perceptive adhesion regardless of the shape or surface shape of the object is still challenging in dry and aquatic surroundings. We developed an electronic sensory soft adhesive device that recapitulates the attaching, mechanosensory, and decision-making capabilities of a soft adhesion actuator. The soft adhesion actuator of an artificial octopus sucker may precisely control its robust attachment against surfaces with various topologies in wet environments as well as a rapid detachment upon deflation. Carbon nanotube-based strain sensors are three-dimensionally coated onto the irregular surface of the artificial octopus sucker to mimic nerve-like functions of an octopus and identify objects via patterns of strain distribution. An integration with machine learning complements decision-making capabilities to predict the weight and center of gravity for samples with diverse shapes, sizes, and mechanical properties, and this function may be useful in turbid water or fragile environments, where it is difficult to utilize vision.


Assuntos
Nanotubos de Carbono , Eletrônica
5.
ACS Appl Mater Interfaces ; 13(5): 6930-6940, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33523645

RESUMO

For highly conformable and universal transport devices, bioinspired dry adhesion systems with reversible molecular attractions (e.g., van der Waals forces, capillarity, or suction stress) between the engaged surfaces have recently become favorable for various dry/wet processes in flexible devices and medical applications. In addition, many efforts have been made for switchable attachments of such adhesives by employing costly sophisticated systems such as mechanically deformable chucks, UV-radiating components, or fluidic channels. In this work, we propose a simple electrothermally actuating transport device based on an octopus-inspired microsphere-embedded sucker (OMS). The adhesive with microsphere-embedded suckers offers enhanced adhesion on dry/wet surfaces, in accordance with investigation of the geometric and materials parameters of the novel suction architecture for maximizing adhesion interactions. Inspired by muscle actuation of octopus tentacles, we laminate the electrothermally reactive poly(3,4-ethylenedioxy thiophene):poly(styrenesulfonic acid) (PEDOT:PSS) layer on the backside of the OMS adhesive patch. By controlling inputs of electrical energy, our assembled actuator may actively expand and contract reversibly to induce switchable attachments and detachments. Our bioinspired device can be integrated onto a robotic arm to attach and release against dry/wet flexible thin objects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...