Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(21): 19565-19571, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31045342

RESUMO

Both photothermal and photovoltaic infrared (IR) detectors employ sensing materials that have an optical band gap. Different from these conventional materials, graphene has a conical band structure that imposes zero band gap. In this study, using the semimetallic multilayer graphene, IR detection at room temperature is realized. The relatively high Seebeck coefficient, ranging from 40 to 60 µV/K, compared to that of the metal, and the large optical absorption in the mid-IR region, in the wavelength range of 7-17 µm, enable graphene to detect IR without an absorber, which is essential for most IR detectors because the band gap of the sensing materials is much larger than the energy of IR and the incident IR can be absorbed directly by the sensing material. Thus, the incident IR can be absorbed directly by the sensing material in our device. The developed detector with a SiN membrane shows high responsivity and detectivity, which are 140 V/W and 5 × 108 cm·Hz1/2/W at 5 Hz, respectively. In addition, the IR sensor shows a response time of 600 µs. In the room-temperature operation of the IR sensor array without cooling, our sensors detect IR emitted from a human body and track the movement. The availability of large-area graphene in current technology opens new applications for metallic two-dimensional materials and a possibility for scale-up.

2.
Nanoscale ; 7(38): 15695-700, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26350352

RESUMO

This study characterizes the effects of incident infrared (IR) radiation on the electrical conductivity of graphene oxide (GO) and examines its potential for mid-IR detection. Analysis of the mildly reduced GO (m-GO) transport mechanism near room temperature reveals variable range hopping (VRH) for the conduction of electrons. This VRH behavior causes the m-GO resistance to exhibit a strong temperature dependence, with a large negative temperature coefficient of resistance of approximately -2 to -4% K(-1). In addition to this hopping transport, the presence of various oxygen-related functional groups within GO enhances the absorption of IR radiation significantly. These two GO material properties are synergically coupled and provoke a remarkable photothermal effect within this material; specifically, a large resistance drop is exhibited by m-GO in response to the increase in temperature caused by the IR absorption. The m-GO bolometer effect identified in this study is different from that exhibited in vanadium oxides, which require added gold-black films that function as IR absorbers owing to their limited IR absorption capability.

3.
J Nanosci Nanotechnol ; 8(1): 329-34, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18468078

RESUMO

Individual single-walled carbon nanotubes (SWCNTs) were synthesized on the patterned water-soluble catalyst by thermal chemical vapor deposition. The individual SWCNTs were obtained by introducing polyvinylpyrrolidone (PVP) as a dispersant. The number of SWCNTs between two electrodes were approximately 1-2 with an average diameter of about 1.7 nm and a yield of forming electrodes of nearly 70%. The PVP played an important role in dispersing catalysts and suppressing the active sites to limit the number of SWCNTs during synthesis, which is a critical condition for fabrication of field effect transistors (FETs). The measured I-V characteristics of the over layer-deposited electrodes revealed a clear gating effect in large portion, in good agreement with Raman observations in several excitation energies. The patterning procedure, catalyst preparation, and growth condition for fabrication of the SWCNT-FET were further discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...