Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(26): 31459-31469, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37341465

RESUMO

Efficient cathodes for the hydrogen evolution reaction (HER) in acidic water electrolysis rely on the use of expensive platinum group metals (PGMs). However, to achieve economically viable operation, both the content of PGMs must be reduced and their intrinsically strong H adsorption mitigated. Herein, we show that the surface effects of hydrogenated TiO2 nanotube (TNT) arrays can make osmium, a so far less-explored PGM, a highly active HER electrocatalyst. These defect-rich TiO2 nanostructures provide an interactive scaffold for the galvanic deposition of Os particles with modulated adsorption properties. Through systematic investigations, we identify the synthesis conditions (OsCl3 concentration/temperature/reaction time) that yield a progressive improvement in Os deposition rate and mass loading, thereby decreasing the HER overpotential. At the same time, the Os particles deposited by this procedure remain mainly sub-nanometric and entirely cover the inner tube walls. An optimally balanced Os@TNT composite prepared at 3 mM/55 °C/30 min exhibits a record low overpotential (η) of 61 mV at a current density of 100 mA cm-2, a high mass activity of 20.8 A mgOs-1 at 80 mV, and a stable performance in an acidic medium. Density functional theory calculations indicate the existence of strong interactions between the hydrogenated TiO2 surface and small Os clusters, which may weaken the Os-H* binding strength and thus boost the intrinsic HER activity of Os centers. The results presented in this study offer new directions for the fabrication of cost-effective PGM-based catalysts and a better understanding of the synergistic electronic interactions at the PGM|TiO2 interface.

2.
Small ; 18(2): e2104892, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741416

RESUMO

In the present work the authors show that anodic TiO2 nanotubes (NT) show excellent harvesting properties for Pt single atoms (Pt SAs) from highly dilute Pt solutions. The tube walls of anodic nanotubes, after adequate annealing to anatase, provide ample of suitable trapping sites-that is, surface Ti3+ -Ov (Ov : oxygen vacancy) defects that are highly effective to extract and accumulate Pt in the form of SAs. A saturated (maximized) SA density can be achieved by an overnight immersion of a TiO2 NT layer to a H2 PtCl6 solution with a concentration that is as low as 0.01 mm Pt. Such TiO2 NTs with surface trapped Pt SAs provide a maximized high activity for photocatalytic H2 generation (reaching a turnover frequency (TOF) of 1.24 × 106 h-1 at a density of 1.4 × 105 Pt atoms µm-2 )-a higher loading with Pt nanoparticles does not further increase the photocatalytic activity. Overall, these findings show that anodic TiO2 nanotubes provide a remarkable substrate for Pt extraction and recovery from very dilute solutions that directly results in a highly efficient photocatalyst, fabricated by a simple immersion technique.


Assuntos
Nanopartículas , Nanotubos , Catálise , Nanotubos/química , Titânio/química
3.
iScience ; 24(8): 102938, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34430818

RESUMO

Here, we evaluate three different noble metal co-catalysts (Pd, Pt, and Au) that are present as single atoms (SAs) on the classic benchmark photocatalyst, TiO2. To trap the single atoms on the surface, we introduced controlled surface vacancies (Ti3+-Ov) on anatase TiO2 nanosheets by a thermal reduction treatment. After anchoring identical loadings of single atoms of Pd, Pt, and Au, we measure the photocatalytic H2 generation rate and compare it to the classic nanoparticle co-catalysts on the nanosheets. While nanoparticles yield the well-established the hydrogen evolution reaction activity sequence (Pt > Pd > Au), for the single atom form, Pd radically outperforms Pt and Au. Based on density functional theory (DFT), we ascribe this unusual photocatalytic co-catalyst sequence to the nature of the charge localization on the noble metal SAs embedded in the TiO2 surface.

4.
Chemistry ; 26(12): 2685-2692, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31788871

RESUMO

Photoelectrochemical (PEC) water splitting is a promising method for the conversion of solar energy into chemical energy stored in the form of hydrogen. Nanostructured hematite (α-Fe2 O3 ) is one of the most attractive materials for a highly efficient charge carrier generation and collection due to its large specific surface area and the short minority carrier diffusion length. In the present work, the PEC water splitting performance of nanostructured α-Fe2 O3 is investigated which was prepared by anodization followed by annealing in a low oxygen ambient (0.03 % O2 in Ar). It was found that low oxygen annealing can activate a significant PEC response of α-Fe2 O3 even at a low temperature of 400 °C and provide an excellent PEC performance compared with classic air annealing. The photocurrent of the α-Fe2 O3 annealed in the low oxygen at 1.5 V vs. RHE results as 0.5 mA cm-2 , being 20 times higher than that of annealing in air. The obtained results show that the α-Fe2 O3 annealed in low oxygen contains beneficial defects and promotes the transport of holes; it can be attributed to the improvement of conductivity due to the introduction of suitable oxygen vacancies in the α-Fe2 O3 . Additionally, we demonstrate the photocurrent of α-Fe2 O3 annealed in low oxygen ambient can be further enhanced by Zn-Co LDH, which is a co-catalyst of oxygen evolution reaction. This indicates low oxygen annealing generates a promising method to obtain an excellent PEC water splitting performance from α-Fe2 O3 photoanodes.

5.
Nanoscale Adv ; 1(12): 4844-4852, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36133131

RESUMO

Here we report that both-end open anodic TiO2 nanotube membranes, after sensitization with a Ru(ii)-based dye, exhibit visible-light switching properties for flow-through the nanotube channels. Under illumination, the gate is in an open state providing ∼four-times faster permeation of small molecules through the membrane compared to a dark state. Switching is reversible with no apparent dye degradation being observed. Gating is possible not only of permeating dye molecules but also of nanoprobes such as polystyrene nanospheres. Supported by quantitative modelling, we attribute the switching mechanism to light-induced changes of the charge distribution at the dye/TiO2 interface which in turn alters the hydrodynamics within the anodic tube membranes. This demonstrates that these simple dye-sensitized nanotube membranes can be used as an optically addressable flow-through gate in nanofluidics.

6.
Chem Commun (Camb) ; 53(86): 11763-11766, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-29027551

RESUMO

We report on free-standing Ta3N5 nanotubular membranes with open top and bottom, used as visible-light-active, flow-through photocatalytic micro-reactors. We grow first a robust anodic Ta2O5 layer, lift-off a membrane and convert to Ta3N5. Such membranes can easily, in a flow-through mode, degrade methylene blue under visible light (wavelength >400 nm) or solar illumination.

7.
Chemistry ; 23(53): 12995-12999, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28704578

RESUMO

Herein, we grew anodic TiO2 nanotube layer with a tube diameter >500 nm and an open tube mouth. We use this morphology in dye-sensitized solar cells (DSSCs) and show that these tubes allow the construction of hybrid hierarchical photoanode structures of nanotubes with a defined and wall-conformal TiO2 nanoparticle decoration. At the same time, the large diameter allows the successful establishment of an additional (insulating) blocking layer of SiO2 or Al2 O3 on the tube wall. We showed that this combination of hierarchical structure and blocking layer significantly enhances the solar-cell efficiency by suppressing recombination reactions. In such a DSSC structure, the solar-cell efficiency under back side illumination with AM1.5 illumination was enhanced from 3 % for the neat tube to 5 % for the hierarchical structure to 7 % when additionally a blocking layer was attached.

8.
Small ; 13(14)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28145627

RESUMO

Establishing self-organized spacing between TiO2 nanotubes allows for highly conformal Nb2 O5 deposition that can be adjusted to optimized supercapacitive behavior.

9.
ChemSusChem ; 10(1): 62-67, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-27933749

RESUMO

'Black' TiO2 -in the widest sense, TiO2 reduced by various treatments-has attracted tremendous scientific interest in recent years because of some outstanding properties; most remarkably in photocatalysis. While the material effects visible light absorption (the blacker, the better), black titania produced by high pressure hydrogenation was recently reported to show another highly interesting feature; noble-metal-free photocatalytic H2 generation. In a systematic investigation of high-temperature hydrogen treatments of anatase nanoparticles, TEM, XRD, EPR, XPS, and photoelectrochemistry are used to characterize different degrees of surface hydrogenation, surface termination, electrical conductivity, and structural defects in the differently treated materials. The materials' intrinsic activity for photocatalytic hydrogen evolution is coupled neither with their visible light absorption behavior nor the formation of amorphous material, but rather must be ascribed to optimized and specific defect formation (gray is better than black). This finding is further confirmed by using a mesoporous anatase matrix as a hydrogenation precursor, which, after conversion to the gray state, even further enhances the overall photocatalytic hydrogen evolution activity.


Assuntos
Hidrogênio/química , Processos Fotoquímicos , Titânio/química , Catálise , Hidrogenação
10.
Nanoscale ; 8(38): 16868-16873, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27714183

RESUMO

In the present work we grow self-organized TiO2 nanotube arrays with a defined and controlled regular spacing between individual nanotubes. These defined intertube gaps allow one to build up hierarchical 1D-branched structures, conformally coated on the nanotube walls using a layer by layer nanoparticle TiO2 decoration of the individual tubes, i.e. having not only a high control over the TiO2 nanotube host structure but also on the harvesting layers. After optimizing the intertube spacing, we build host-guest arrays that show a drastically enhanced performance in photocatalytic H2 generation, compared to any arrangement of conventional TiO2 nanotubes or conventional TiO2 nanoparticle layers. We show this beneficial effect to be due to a combination of an increased large surface area (mainly provided by the nanoparticle layers) with a fast transport of the harvested charge within the passivated 1D nanotubes. We anticipate that this type of hierarchical structures based on TiO2 nanotubes with adjustable spacing will find even wider application, as they provide an unprecedented controllable combination of surface area and carrier transport.

11.
Adv Mater ; 28(12): 2432-8, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26810837

RESUMO

Subnitrides strongly enhance the efficiency of Ta3 N5 -nanotube photoanodes in photochemical water splitting. The fabrication of Ta3 N5 nanotube layers with a controlled subnitride layer at the interface to the back contact is demonstrated. The insertion of this subnitride layer has a strong influence on the electron transfer to the back contact, and as a result leads to a drastic shift in photocurrent onset potential and a considerable enhancement of photocurrent conversion efficiency.

12.
ChemSusChem ; 8(16): 2615-20, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26195328

RESUMO

In the present work we grow anodic self-organized Ta2O5 nanotube layers, which are converted by ammonolysis to Ta3 N5 nanotubes, and then are used as photoanodes for photoanalytic water splitting. We introduce a two-step anodization process that not only improves order (reduced growth defects) and overall light absorption in the nanotube layers, but also provides a significantly reduced interface charge resistance at the nitride/metal interface due to subnitride (TaNx ) formation. As a result, such nanotube anodes afford a 15-fold increase of the photocurrent compared with conventional nanotubular Ta3 N5 electrodes under AM 1.5 G simulated sunlight (100 mW cm(-2)) conditions.


Assuntos
Nanotubos/química , Tantálio/química , Eletrodos , Microscopia Eletrônica de Varredura , Nanotubos/efeitos da radiação , Nanotubos/ultraestrutura , Luz Solar , Tantálio/efeitos da radiação , Água/química
13.
Chemistry ; 21(25): 9204-8, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25962935

RESUMO

In the present work we report significant enhancement of the photoelectrochemical properties of self- organized TiO2 nanotubes by a combined "de-coring" of classic nanotubes followed by an appropiate TiCl4 treatment. We show that, except for the expected particle decoration, a key effect of the TiCl4 treatment is that the electron transport characteristics in TiO2 nanotubes can be drastically improved, for example, we observe an enhancement of up to 70 % in electron-transport times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...