Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(19): e2400598, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477451

RESUMO

Graphene is used as a growth template for van der Waals epitaxy of organic semiconductor (OSC) thin films. During the synthesis and transfer of chemical-vapor-deposited graphene on a target substrate, local inhomogeneities in the graphene-in particular, a nonuniform strain field in the graphene template-can easily form, causing poor morphology and crystallinity of the OSC thin films. Moreover, a strain field in graphene introduces a pseudo-electric field in the graphene. Here, the study investigates how the strain and strain-induced pseudo-electric field of a graphene template affect the self-assembly of π-conjugated organic molecules on it. Periodically strained graphene templates are fabricated by transferring graphene onto an array of nanospheres and then analyzed the growth and nucleation behavior of C60 thin films on the strained graphene templates. Both experiments and a numerical simulation demonstrated that strained graphene reduced the desorption energy between the graphene and the C60 molecules and thereby suppressed both nucleation and growth of the C60. A mechanism is proposed in which the strain-induced pseudo-electric field in graphene modulates the binding energy of organic molecules on the graphene.

2.
ACS Nano ; 16(2): 2176-2187, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35112565

RESUMO

Sensitive and selective detection of target gases is the ultimate goal for commercialization of graphene gas sensors. Here, ultrasensitive n-channel graphene gas sensors were developed by using n-doped graphene with ethylene amines. The exposure of the n-doped graphene to oxidizing gases such as NO2 leads to a current decrease that depends strongly on the number of amine functional groups in various types of ethylene amines. Graphene doped with diethylenetriamine (DETA) exhibits the highest response, recovery, and long-term sensing stability to NO2, with an average detection limit of 0.83 parts per quadrillion (ppq, 10-15), due to the attractive electrostatic interaction between electron-rich graphene and electron-deficient NO2. Our first-principles calculation supported a preferential adsorption of NO2 on n-doped graphene. In addition, gas molecules on the n-channel graphene provide charged impurities, thereby intensifying the current decrease for an excellent response to oxidizing gases such as NO2 or SO2. On the contrary, absence of such a strong interaction between NH3 and DETA-doped graphene and combined effects of current increase by n-doping and mobility decrease by charged impurities result in a completely no response to NH3. Because the n-channel is easily induced by a top-molecular dopant, a flexible graphene sensor with outstanding NO2 detection capability was successfully fabricated on plastic without vertical stacks of gate-electrode and gate-dielectric. Our gate-free graphene gas sensors enabled by nondestructive molecular n-doping could be used for the selective detection of subppq-level NO2 in a gas mixture with reducing gases.

3.
ACS Appl Mater Interfaces ; 12(49): 55493-55500, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33233877

RESUMO

Surface modification layer of a silicon substrate has been used to enhance the performance of graphene field-effect transistors (FETs). In this report, ultrathin and chemically robust polymer brush was used as a surface modification to enhance the gas sensing properties of graphene FETs. The insertion of the polymer brush decreased substrate-induced doping of graphene. This leads to a huge increase in field-effect mobility as well as a minimum shift of the Dirac point voltage. The use of the polymer brush enables fast detection of target gas molecules because graphene sensing modality can be maximized at the undoped state of graphene. The increase of source-drain current, as well as the abrupt decrease of electron mobility upon NO2 exposure, was utilized for the instantaneous detection, and a limit of detection of 4.8 ppb was achieved with graphene FETs on PS brush. We also showed excellent cross-sensitivity of graphene gas sensors to NH3, CO2, and relative humidity condition; the source-drain current decreases upon NH3 exposure, while response to CO2 or relative humidity condition is extremely low. Our results prove that reducing the substrate-induced doping of graphene with a polymer brush is a direct method for boosting the gas sensing properties of graphene FETs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...