Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073429

RESUMO

Magnesium-based alloys are attractive as hydrogen storage materials due to their lightweight and high absorption, but their high operating temperatures and very slow kinetics are obstacles to practical applications. Therefore, the effect of CaO has improved the hydrogenation kinetics and slowed down the degradation. The Mg2NiHx-CaO composites were prepared by hydrogen-induced mechanical alloying (HIMA). Hydrogenation kinetics was performed by using an Automatic PCT Measuring System and evaluated in the temperature range of 423, 523, and 623 K. As a result of calculating the hydrogen absorption amounts through the hydrogenation kinetics curve, they were calculated as about 0.52 wt%, 1.21 wt%, and 1.59 wt% (Mg2NiHx-10 wt% CaO). In this study, the material environmental aspects of Mg2NiHx-CaO composites were investigated through life cycle assessment (LCA). LCA was performed analyzing the environmental impact characteristics of the manufacturing process by using Gabi software and the Eco-Indicator 99' and Centrum voor Milieuweten schappen (CML 2001) methodology. As a result, the contents of global warming potential (GWP) and fossil fuels were found to have a higher impact than other impact categories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...