Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Am Chem Soc ; 140(41): 13301-13307, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30251855

RESUMO

A comprehensive experimental survey consisting of 36 molecular balances was conducted to compare 18 pairs of S-π versus O-π interactions over a wide range of structural, geometric, and solvent parameters. A strong linear correlation was observed between the folding energies of the sulfur and oxygen balances across the entire library of balance pairs. The more stable interaction systematically switched from the O-π to S-π interaction. Computational studies of bimolecular PhSCH3-arene and PhOCH3-arene complexes were able to replicate the experimental trends in the molecular balances. The change in preference for the O-π to S-π interaction was due to the interplay of stabilizing (dispersion and solvophobic) and destabilizing (exchange-repulsion) terms arising from the differences in size and polarizability of the oxygen and sulfur atoms.

3.
Angew Chem Int Ed Engl ; 55(28): 8086-9, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27159670

RESUMO

The stabilizing and destabilizing effects of alkyl groups on an aromatic stacking interaction were experimentally measured in solution. The size (Me, Et, iPr, and tBu) and position (meta and para) of the alkyl groups were varied in a molecular balance model system designed to measure the strength of an intramolecular aromatic interaction. Opposite stability trends were observed for alkyl substituents at different positions on the aromatic rings. At the closer meta-position, smaller groups were stabilizing and larger groups were destabilizing. Conversely, at the farther para-position, the larger alkyl groups were systematically more stabilizing with the bulky tBu group forming the strongest stabilizing interaction. X-ray crystal structures showed that the stabilizing interactions of the small meta-alkyl and large para-alkyl groups were due to their similar distances and van der Waals contact areas with the edge of opposing aromatic ring.

4.
Chem Commun (Camb) ; 51(79): 14809-12, 2015 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-26299357

RESUMO

A dynamic intramolecular charge-transfer (CT) complex was designed that displayed reversible colour changes in the solid-state when treated with different organic solvents. The origins of the dichromatism were shown to be due to solvent-inclusion, which induced changes in the relative orientations of the donor pyrene and acceptor naphthalenediimide units.

5.
J Am Chem Soc ; 137(25): 8014-7, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26069987

RESUMO

A new series of molecular torsion balances were designed to measure the strength of individual Ag-π interactions in solution for an Ag(I) coordinated to a pyridine nitrogen. The formation of a well-defined intramolecular Ag-π interaction in these model systems was verified by X-ray crystallography and (1)H NMR. The strength of the intramolecular Ag-π interaction in solution was found to be stabilizing in nature and quantified to be -1.34 to -2.63 kcal/mol using a double mutant cycle analysis. The Ag-π interaction was also found to be very sensitive to changes in geometry or solvent environment.

6.
Chem Sci ; 6(7): 4358-4364, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29218207

RESUMO

In this study, the contributions of London dispersion forces to the strength of aromatic stacking interactions in solution were experimentally assessed using a small molecule model system. A series of molecular torsion balances were designed to measure an intramolecular stacking interaction via a conformational equilibrium. To probe the importance of the dispersion term, the size and polarizability of one of the aromatic surfaces were systematically increased (benzene, naphthalene, phenanthrene, biphenyl, diphenylethene, and diphenylacetylene). After correcting for solvophobic, linker, and electrostatic substituent effects, the variations due to polarizability were found to be an order of magnitude smaller in solution than in comparison to analogous computational studies in vacuo. These results suggest that in solution the dispersion term is a small component of the aromatic stacking interaction in contrast to their dominant role in vacuo.

7.
Org Lett ; 16(19): 5064-7, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25238038

RESUMO

CH-π interactions have been cited as an important contributor to carbohydrate recognition. To determine whether N-heterocycles form stronger CH-π interactions, the interactions of methyl ether groups with heterocyclic and nonheterocyclic aromatic surfaces were studied. Both experimental and computational experiments found that N-heterocyclic aromatic surfaces formed stronger interactions. This enhancement was attributed to attractive dipole-dipole interactions between the methyl ether C-O bond and the N-heterocyclic aromatic dipole.


Assuntos
Carboidratos/química , Éteres Metílicos/química , Modelos Moleculares , Estrutura Molecular
8.
J Am Chem Soc ; 136(40): 14060-7, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25238590

RESUMO

The goal of this study was to experimentally test the additivity of the electrostatic substituent effects (SEs) for the aromatic stacking interaction. The additivity of the SEs was assessed using a small molecule model system that could adopt an offset face-to-face aromatic stacking geometry. The intramolecular interactions of these molecular torsional balances were quantitatively measured via the changes in a folded/unfolded conformational equilibrium. Five different types of substituents were examined (CH3, OCH3, Cl, CN, and NO2) that ranged from electron-donating to electron-withdrawing. The strength of the intramolecular stacking interactions was measured for 21 substituted aromatic stacking balances and 21 control balances in chloroform solution. The observed stability trends were consistent with additive SEs. Specifically, additive SE models could predict SEs with an accuracy from ±0.01 to ±0.02 kcal/mol. The additive SEs were consistent with Wheeler and Houk's direct SE model. However, the indirect or polarization SE model cannot be ruled out as it shows similar levels of additivity for two to three substituent systems, which were the number of substituents in our model system. SE additivity also has practical utility as the SEs can be accurately predicted. This should aid in the rational design and optimization of systems that utilize aromatic stacking interactions.


Assuntos
Hidrocarbonetos Aromáticos/química , Modelos Moleculares , Conformação Molecular , Fenantrenos/química , Éteres Fenílicos/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...