Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39207729

RESUMO

Several methods have been developed to computationally predict cell-types for single cell RNA sequencing (scRNAseq) data. As methods are developed, a common problem for investigators has been identifying the best method they should apply to their specific use-case. To address this challenge, we present CHAI (consensus Clustering tHrough similArIty matrix integratIon for single cell-type identification), a wisdom of crowds approach for scRNAseq clustering. CHAI presents two competing methods which aggregate the clustering results from seven state-of-the-art clustering methods: CHAI-AvgSim and CHAI-SNF. CHAI-AvgSim and CHAI-SNF demonstrate superior performance across several benchmarking datasets. Furthermore, both CHAI methods outperform the most recent consensus clustering method, SAME-clustering. We demonstrate CHAI's practical use case by identifying a leader tumor cell cluster enriched with CDH3. CHAI provides a platform for multiomic integration, and we demonstrate CHAI-SNF to have improved performance when including spatial transcriptomics data. CHAI overcomes previous limitations by incorporating the most recent and top performing scRNAseq clustering algorithms into the aggregation framework. It is also an intuitive and easily customizable R package where users may add their own clustering methods to the pipeline, or down-select just the ones they want to use for the clustering aggregation. This ensures that as more advanced clustering algorithms are developed, CHAI will remain useful to the community as a generalized framework. CHAI is available as an open source R package on GitHub: https://github.com/lodimk2/chai.


Assuntos
Algoritmos , Análise de Célula Única , Análise por Conglomerados , Humanos , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos , Biologia Computacional/métodos , Software , Perfilação da Expressão Gênica/métodos
2.
ACS Biomater Sci Eng ; 10(8): 4865-4877, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39007451

RESUMO

The mechanical cue of fiber alignment plays a key role in the development of various tissues in the body. The ability to study the effect of these stimuli in vitro has been limited previously. Here, we present a microfluidic device capable of intrinsically generating aligned fibers using the microchannel geometry. The device also features tunable interstitial fluid flow and the ability to form a morphogen gradient. These aspects allow for the modeling of complex tissues and to differentiate cell response to different stimuli. To demonstrate the abilities of our device, we incorporated luminal epithelial cysts into our device and induced growth factor stimulation. We found the mechanical cue of fiber alignment to play a dominant role in cell elongation and the ability to form protrusions was dependent on cadherin-3. Together, this work serves as a springboard for future potential with these devices to answer questions in developmental biology and complex diseases such as cancers.


Assuntos
Morfogênese , Animais , Quimiocinas/metabolismo , Microfluídica/métodos , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Caderinas/metabolismo , Dispositivos Lab-On-A-Chip , Epitélio/metabolismo , Epitélio/crescimento & desenvolvimento , Cães , Humanos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Células Madin Darby de Rim Canino , Modelos Biológicos
3.
bioRxiv ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38562750

RESUMO

Several methods have been developed to computationally predict cell-types for single cell RNA sequencing (scRNAseq) data. As methods are developed, a common problem for investigators has been identifying the best method they should apply to their specific use-case. To address this challenge, we present CHAI (consensus Clustering tHrough similArIty matrix integratIon for single cell type identification), a wisdom of crowds approach for scRNAseq clustering. CHAI presents two competing methods which aggregate the clustering results from seven state of the art clustering methods: CHAI-AvgSim and CHAI-SNF. Both methods demonstrate improved performance on a diverse selection of benchmarking datasets, besides also outperforming a previous consensus clustering method. We demonstrate CHAI's practical use case by identifying a leader tumor cell cluster enriched with CDH3. CHAI provides a platform for multiomic integration, and we demonstrate CHAI-SNF to have improved performance when including spatial transcriptomics data. CHAI is intuitive and easily customizable; it provides a way for users to add their own clustering methods to the pipeline, or down-select just the ones they want to use for the clustering aggregation. CHAI is available as an open source R package on GitHub: https://github.com/lodimk2/chai.

4.
PLoS One ; 19(1): e0296153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165954

RESUMO

Leader cells direct collective migration through sensing cues in their microenvironment to determine migration direction. The mechanism by which leader cells sense the mechanical cue of organized matrix architecture culminating in a mechanical response is not well defined. In this study, we investigated the effect of organized collagen matrix fibers on leader cell mechanics and demonstrate that leader cells protrude along aligned fibers resulting in an elongated phenotype of the entire cluster. Further, leader cells show increased mechanical interactions with their nearby matrix compared to follower cells, as evidenced by increased traction forces, increased and larger focal adhesions, and increased expression of integrin-α2. Together our results demonstrate changes in mechanical matrix cues drives changes in leader cell mechanoresponse that is required for directional collective migration. Our findings provide new insights into two fundamental components of carcinogenesis, namely invasion and metastasis.


Assuntos
Colágeno , Movimento Celular , Colágeno/farmacologia
5.
Adv Cancer Res ; 160: 61-81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37704291

RESUMO

A fundamental step of tumor metastasis is tumor cell migration away from the primary tumor site. One mode of migration that is essential but still understudied is collective invasion, the process by which clusters of cells move in a coordinated fashion. In recent years, there has been growing interest to understand factors regulating collective invasion, with increasing number of studies investigating the biomechanical regulation of collective invasion. In this review we discuss the dynamic relationship between tumor microenvironment cues and cell response by first covering mechanical factors in the microenvironment and second, discussing the mechanosensing pathways utilized by cells in collective clusters to dynamically respond to mechanical matrix cues. Finally, we discuss model systems that have been developed which have increased our understanding of the mechanical factors contributing to tumor progression.


Assuntos
Modelos Biológicos , Neoplasias , Humanos , Microambiente Tumoral
6.
Dev Cell ; 58(1): 34-50.e9, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36626870

RESUMO

Carcinoma dissemination can occur when heterogeneous tumor and tumor-stromal cell clusters migrate together via collective migration. Cells at the front lead and direct collective migration, yet how these leader cells form and direct migration are not fully appreciated. From live videos of primary mouse and human breast tumor organoids in a 3D microfluidic system mimicking native breast tumor microenvironment, we developed 3D computational models, which hypothesize that leader cells need to generate high protrusive forces and overcome extracellular matrix (ECM) resistance at the leading edge. From single-cell sequencing analyses, we find that leader cells are heterogeneous and identify and isolate a keratin 14- and cadherin-3-positive subpopulation sufficient to lead collective migration. Cdh3 controls leader cell protrusion dynamics through local production of laminin, which is required for integrin/focal adhesion function. Our findings highlight how a subset of leader cells interact with the microenvironment to direct collective migration.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Camundongos , Humanos , Animais , Feminino , beta Catenina , Laminina , Movimento Celular/fisiologia , Caderinas/metabolismo , Neoplasias da Mama/patologia , Microambiente Tumoral
7.
J Cell Sci ; 134(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34477203

RESUMO

Both tumor cell-intrinsic signals and tumor cell-extrinsic signals from cells within the tumor microenvironment influence tumor cell dissemination and metastasis. The fibrillar collagen receptor tyrosine kinase (RTK) discoidin domain receptor 2 (DDR2) is essential for breast cancer metastasis in mouse models, and high expression of DDR2 in tumor and tumor stromal cells is strongly associated with poorer clinical outcomes. DDR2 tyrosine kinase activity has been hypothesized to be required for the metastatic activity of DDR2; however, inhibition of DDR2 tyrosine kinase activity, along with that of other RTKs, has failed to provide clinically relevant responses in metastatic patients. Here, we show that tyrosine kinase activity-independent action of DDR2 in tumor cells can support Matrigel invasion and in vivo metastasis. Paracrine actions of DDR2 in tumor cells and cancer-associated fibroblasts (CAFs) also support tumor invasion, migration and lung colonization in vivo. These data suggest that tyrosine kinase-independent functions of DDR2 could explain failures of tyrosine kinase inhibitor treatment in metastatic breast cancer patients and highlight the need for alternative therapeutic strategies that inhibit both tyrosine kinase-dependent and -independent actions of RTKs in the treatment of breast cancer. This article has an associated First Person interview with the first author of the paper.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Receptor com Domínio Discoidina 2 , Animais , Neoplasias da Mama/genética , Fibroblastos Associados a Câncer/metabolismo , Movimento Celular , Receptor com Domínio Discoidina 2/genética , Receptor com Domínio Discoidina 2/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Camundongos , Fosforilação , Microambiente Tumoral
8.
Trends Cancer ; 7(10): 879-882, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34462237

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has had a detrimental effect on research. However, little has been done to identify and solve the unique challenges faced by early career investigators (ECIs). As a group of American Cancer Society-funded ECIs, we provide recommendations for solving these challenges in the aftermath of the pandemic.


Assuntos
COVID-19 , Mobilidade Ocupacional , Pesquisadores , Equilíbrio Trabalho-Vida , Humanos , Tutoria , Pesquisadores/economia , Sociedades Científicas
9.
Elife ; 82019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31144616

RESUMO

Biomechanical changes in the tumor microenvironment influence tumor progression and metastases. Collagen content and fiber organization within the tumor stroma are major contributors to biomechanical changes (e., tumor stiffness) and correlated with tumor aggressiveness and outcome. What signals and in what cells control collagen organization within the tumors, and how, is not fully understood. We show in mouse breast tumors that the action of the collagen receptor DDR2 in CAFs controls tumor stiffness by reorganizing collagen fibers specifically at the tumor-stromal boundary. These changes were associated with lung metastases. The action of DDR2 in mouse and human CAFs, and tumors in vivo, was found to influence mechanotransduction by controlling full collagen-binding integrin activation via Rap1-mediated Talin1 and Kindlin2 recruitment. The action of DDR2 in tumor CAFs is thus critical for remodeling collagen fibers at the tumor-stromal boundary to generate a physically permissive tumor microenvironment for tumor cell invasion and metastases.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Fibroblastos Associados a Câncer/metabolismo , Receptor com Domínio Discoidina 2/metabolismo , Integrinas/metabolismo , Metástase Neoplásica/fisiopatologia , Animais , Colágeno/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Microambiente Tumoral
10.
Cancer Res ; 79(8): 1899-1912, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30862718

RESUMO

Collective cell migration is an adaptive, coordinated interactive process involving cell-cell and cell-extracellular matrix (ECM) microenvironmental interactions. A critical aspect of collective migration is the sensing and establishment of directional movement. It has been proposed that a subgroup of cells known as leader cells localize at the front edge of a collectively migrating cluster and are responsible for directing migration. However, it is unknown how and when leader cells arrive at the front edge and what environmental cues dictate leader cell development and behavior. Here, we addressed these questions by combining a microfluidic device design that mimics multiple tumor microenvironmental cues concurrently with biologically relevant primary, heterogeneous tumor cell organoids. Prior to migration, breast tumor leader cells (K14+) were present throughout a tumor organoid and migrated (polarized) to the leading edge in response to biochemical and biomechanical cues. Impairment of either CXCR4 (biochemical responsive) or the collagen receptor DDR2 (biomechanical responsive) abrogated polarization of leader cells and directed collective migration. This work demonstrates that K14+ leader cells utilize both chemical and mechanical cues from the microenvironment to polarize to the leading edge of collectively migrating tumors. SIGNIFICANCE: These findings demonstrate that pre-existing, randomly distributed leader cells within primary tumor organoids use CXCR4 and DDR2 to polarize to the leading edge and direct migration.


Assuntos
Movimento Celular , Receptor com Domínio Discoidina 2/fisiologia , Queratina-14/metabolismo , Neoplasias Mamárias Experimentais/patologia , Organoides/patologia , Receptores CXCR4/metabolismo , Animais , Comunicação Celular , Diferenciação Celular , Matriz Extracelular , Feminino , Humanos , Queratina-14/genética , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Transgênicos , Organoides/metabolismo , Receptores CXCR4/genética , Transdução de Sinais , Microambiente Tumoral
11.
Sci Rep ; 6: 28038, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27292569

RESUMO

Nucleus pulposus (NP) cells of the intervertebral disc are essential for synthesizing extracellular matrix that contributes to disc health and mechanical function. NP cells have a unique morphology and molecular expression pattern derived from their notochordal origin, and reside in N-cadherin (CDH2) positive cell clusters in vivo. With disc degeneration, NP cells undergo morphologic and phenotypic changes including loss of CDH2 expression and ability to form cell clusters. Here, we investigate the role of CDH2 positive cell clusters in preserving healthy, biosynthetically active NP cells. Using a laminin-functionalized hydrogel system designed to mimic features of the native NP microenvironment, we demonstrate NP cell phenotype and morphology is preserved only when NP cells form CDH2 positive cell clusters. Knockdown (CRISPRi) or blocking CDH2 expression in vitro and in vivo results in loss of a healthy NP cell. Findings also reveal that degenerate human NP cells that are CDH2 negative can be promoted to re-express CDH2 and healthy, juvenile NP matrix synthesis patterns by promoting cell clustering for controlled microenvironment conditions. This work also identifies CDH2 interactions with ß-catenin-regulated signaling as one mechanism by which CDH2-mediated cell interactions can control NP cell phenotype and biosynthesis towards maintenance of healthy intervertebral disc tissues.


Assuntos
Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Técnicas de Cultura de Células/métodos , Núcleo Pulposo/citologia , Adolescente , Adulto , Idoso , Animais , Comunicação Celular , Células Cultivadas , Criança , Técnicas de Silenciamento de Genes , Humanos , Pessoa de Meia-Idade , Núcleo Pulposo/metabolismo , Fenótipo , Transdução de Sinais , Suínos , Adulto Jovem , beta Catenina/metabolismo
12.
Cell Mol Bioeng ; 8(1): 51-62, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25848407

RESUMO

Juvenile nucleus pulposus (NP) cells of the intervertebral disc (IVD) are large, vacuolated cells that form cell clusters with strong cell-cell interactions. With maturation and aging, NP cells lose their ability to form these cell clusters, with aging-associated changes in NP cell phenotype, morphology, and proteoglycan synthesis that may contribute to IVD degeneration. Therefore, it is important to understand the mechanisms governing juvenile NP cell cluster behavior towards the goal of revealing factors that can promote juvenile, healthy NP cell phenotypes. N-cadherin has been identified as a cell-cell adhesion marker that is present in juvenile NP cells, but disappears with age. The goal of this study was to reveal the importance of N-cadherin in regulating cell-cell interactions in juvenile NP cell cluster formation and test for a regulatory role in maintaining a juvenile NP phenotype in vitro. Juvenile porcine IVD cells, of notochordal origin, were promoted to form cell clusters in vitro, and analyzed for preservation of the juvenile NP phenotype. Additionally, cadherin-blocking experiments were performed to prevent cluster formation in order to study the importance of cluster formation in NP cell signaling. Findings reveal N-cadherin-mediated cell-cell contacts promote cell clustering behavior and regulate NP cell matrix production and preservation of NP-specific markers. Inhibition of N-cadherin-mediated contacts resulted in loss of all features of the juvenile NP cell. These results establish a regulatory role for N-cadherin in juvenile NP cells, and suggest that preservation of the N-cadherin mediated cell-cell contact is important for preserving juvenile NP cell phenotype and morphology.

13.
J Biomech Eng ; 136(2): 021010, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24390195

RESUMO

Intervertebral disc (IVD) disorders are a major contributor to disability and societal health care costs. Nucleus pulposus (NP) cells of the IVD exhibit changes in both phenotype and morphology with aging-related IVD degeneration that may impact the onset and progression of IVD pathology. Studies have demonstrated that immature NP cell interactions with their extracellular matrix (ECM) may be key regulators of cellular phenotype, metabolism and morphology. The objective of this article is to review our recent experience with studies of NP cell-ECM interactions that reveal how ECM cues can be manipulated to promote an immature NP cell phenotype and morphology. Findings demonstrate the importance of a soft (<700 Pa), laminin-containing ECM in regulating healthy, immature NP cells. Knowledge of NP cell-ECM interactions can be used for development of tissue engineering or cell delivery strategies to treat IVD-related disorders.


Assuntos
Matriz Extracelular/fisiologia , Colágenos Fibrilares/fisiologia , Fibrocartilagem/fisiologia , Disco Intervertebral/citologia , Disco Intervertebral/fisiologia , Mecanotransdução Celular/fisiologia , Modelos Biológicos , Animais , Diferenciação Celular/fisiologia , Simulação por Computador , Módulo de Elasticidade/fisiologia , Humanos , Estresse Mecânico
14.
Acta Biomater ; 10(3): 1102-11, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24287160

RESUMO

Intervertebral disc (IVD) disorders and age-related degeneration are believed to contribute to lower back pain. There is significant interest in cell-based strategies for regenerating the nucleus pulposus (NP) region of the disc; however, few scaffolds have been evaluated for their ability to promote or maintain an immature NP cell phenotype. Previous studies have shown that NP cell-laminin interactions promote cell adhesion and biosynthesis, which suggests a laminin-functionalized biomaterial may be useful for promoting or maintaining the NP cell phenotype. Here, a photocrosslinkable poly(ethylene glycol)-laminin 111 (PEG-LM111) hydrogel was developed. The mechanical properties of PEG-LM111 hydrogel could be tuned within the range of dynamic shear moduli values previously reported for human NP. When primary immature porcine NP cells were seeded onto PEG-LM111 hydrogels of varying stiffnesses, LM111-presenting hydrogels were found to promote cell clustering and increased levels of sGAG production as compared to stiffer LM111-presenting and PEG-only gels. When cells were encapsulated in 3-D gels, hydrogel formulation was found to influence NP cell metabolism and expression of proposed NP phenotypic markers, with higher expression of N-cadherin and cytokeratin 8 observed for cells cultured in softer (<1kPa) PEG-LM111 hydrogels. Overall, these findings suggest that soft, LM111-functionalized hydrogels may promote or maintain the expression of specific markers characteristic of an immature NP cell phenotype.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Disco Intervertebral/fisiologia , Laminina/farmacologia , Luz , Polietilenoglicóis/farmacologia , Regeneração/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Disco Intervertebral/citologia , Disco Intervertebral/efeitos dos fármacos , Fenômenos Mecânicos , Fenótipo , Sus scrofa
15.
Open Orthop J ; 6: 383-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22962568

RESUMO

Intervertebral disc herniation may contribute to inflammatory processes that associate with radicular pain and motor deficits. Molecular changes at the affected dorsal root ganglion (DRG), spinal cord, and even midbrain, have been documented in rat models of radiculopathy or nerve injury. The objective of this study was to evaluate gait and the expression of key pain receptors in the midbrain in a rodent model of radiculopathy. Radiculopathy was induced by harvesting tail nucleus pulposus (NP) and placing upon the right L5 DRG in rats (NP-treated, n=12). Tail NP was discarded in sham-operated animals (n=12). Mechanical allodynia, weight-bearing, and gait were evaluated in all animals over time. At 1 and 4 weeks after surgery, astrocyte and microglial activation was tested in DRG sections. Midbrain sections were similarly evaluated for immunoreactivity to serotonin (5HT(2B)), mu-opioid (µ-OR), and metabotropic glutamate (mGluR4 and 5) receptor antibodies. NP-treated animals placed less weight on the affected limb 1 week after surgery and experienced mechanical hypersensitivity over the duration of the study. Astroctye activation was observed at DRGs only at 4 weeks after surgery. Findings for pain receptors in the midbrain of NP-treated rats included an increased expression of 5HT(2B) at 1, but not 4 weeks; increased expression of µ-OR and mGluR5 at 1 and 4 weeks (periaqueductal gray region only); and no changes in expression of mGluR4 at any point in this study. These observations provide support for the hypothesis that the midbrain responds to DRG injury with a transient change in receptors regulating pain responses.

16.
J Biomed Mater Res B Appl Biomater ; 90(1): 319-26, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19072988

RESUMO

BACKGROUND: Tumor necrosis factor alpha (TNFalpha) is a cytokine that regulates immune and inflammatory overactivation in various pathological states. Protein therapeutics may antagonize this cytokine, but may also have systemic toxicities. Small molecule natural products are also efficacious, but can suffer from poor oral bioavailability. A drug delivery vehicle is needed to sustain release of active therapeutics and address localized inflammation. MATERIALS: Chitosan is a biocompatible aminopolysaccharide that undergoes thermally-initiated gelation in cosolutions with glycerophosphate (GP), and may entrap and sustain release of additive therapeutics. Gelation time and temperature of chitosan/GP were evaluated by turbidity (OD(350)), as was the kinetic effect of bovine serum albumin (BSA) entrapment. We investigated in vitro release of BSA and various anti-TNF agents (curcumin, sTNFRII, anti-TNF antibody) and confirmed in vitro activity of the released drugs using an established bioassay. RESULTS: Turbidity results show that chitosan/GP thermogel achieves gelation at 37 degrees C within 10 min, even with significant protein loading. Sustained BSA release occurred with 50% retained at 7 days. All anti-TNF therapeutics exhibited sustained release, with 10% of sTNFRII and anti-TNF antibody remaining after 7 days and 10% of curcumin remaining after 20 days. After release, each compound antagonized TNFalpha-cytotoxicity in murine fibrosarcoma cells. CONCLUSIONS: This study demonstrates that thermogelling chitosan/GP entraps and sustains release of a broad range of anti-TNF agents. Such delivery of disease-modifying therapy could establish a drug depot to treat local inflammation. The breadth of molecular sizes demonstrates significant versatility, and slow release could protect against toxicities of systemic delivery.


Assuntos
Anticorpos/administração & dosagem , Quitosana/administração & dosagem , Curcumina/administração & dosagem , Portadores de Fármacos , Receptores do Fator de Necrose Tumoral/administração & dosagem , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Anticorpos/imunologia , Linhagem Celular Tumoral , Curcumina/farmacologia , Géis , Cinética , Camundongos , Fator de Necrose Tumoral alfa/imunologia
17.
J Biomed Mater Res B Appl Biomater ; 90(1): 67-74, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18988275

RESUMO

Biodegradable polymeric scaffolds are of interest for delivering antibiotics to local sites of infection in orthopaedic applications, such as bone and diarthrodial joints. The objective of this study was to develop a biodegradable scaffold with ease of drug loading in aqueous solution, while providing for drug depot delivery via syringe injection. Elastin-like polypeptides (ELPs) were used for this application, biopolymers of repeating pentapeptide sequences that were thermally triggered to undergo in situ depot formation at body temperature. ELPs were modified to enable loading with the antibiotics, cefazolin, and vancomycin, followed by induction of the phase transition in vitro. Cefazolin and vancomycin concentrations were monitored, as well as bioactivity of the released antibiotics, to test an ability of the ELP depot to provide for prolonged release of bioactive drugs. Further tests of formulation viscosity were conducted to test suitability as an injectable drug carrier. Results demonstrate sustained release of therapeutic concentrations of bioactive antibiotics by the ELP, with first-order time constants for drug release of approximately 25 h for cefazolin and approximately 500 h for vancomycin. These findings illustrate that an injectable, in situ forming ELP depot can provide for sustained release of antibiotics with an effect that varies across antibiotic formulation. ELPs have important advantages for drug delivery, as they are known to be biocompatible, biodegradable, and elicit no known immune response. These benefits suggest distinct advantages over currently used carriers for antibiotic drug delivery in orthopedic applications.


Assuntos
Antibacterianos/administração & dosagem , Portadores de Fármacos , Sequência de Aminoácidos , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Materiais Biocompatíveis , Cefazolina/administração & dosagem , Cefazolina/farmacologia , Preparações de Ação Retardada , Testes de Sensibilidade Microbiana , Reologia , Vancomicina/administração & dosagem , Vancomicina/farmacologia
18.
J Neurosurg Spine ; 9(2): 221-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18764758

RESUMO

OBJECT: Biochemical irritation of the dorsal root ganglion (DRG) after intervertebral disc herniation contributes to radiculopathy through tumor necrosis factor-alpha (TNFalpha)-mediated inflammation. Soluble TNF receptor Type II (sTNFRII) sequesters this cytokine, providing clinical benefit. Previous work involving conjugation of sTNFRII with thermally responsive elastin-like polypeptide (ELP) yielded a chimeric protein (ELP-sTNFRII) with in vitro anti-TNFalpha bioactivity. Furthermore, temperature-triggered ELP aggregation into a "depot" prolongs protein residence time following perineural injection. In this study the authors evaluated the inflammatory phenotype of DRG explants after TNFalpha stimulation, and assessed the abilities of sTNFRII or ELP-sTNFRII to attenuate these neuro-inflammatory changes. METHODS: Rat lumbar DRGs (35 animals) were treated in 6 groups, as follows: control; TNFalpha (25 ng/ml); TNFalpha with low-(0.2 microg/ml) or high-dose (1 microg/ml) sTNFRII; and TNFalpha with low-(52.5 microg/ml) or high-dose (262.5 microg/ml) ELP-sTNFRII. After 24 hours, supernatant was evaluated for inflammatory cytokines (interleukin [IL]-1, IL-6, and IL-10); prostaglandin E2; and metabolites (glutamate, lactate, and pyruvate). Single-factor analysis of variance with post hoc Dunn analysis (alpha = 0.05) was used to assess treatment differences. RESULTS: Incubation of explants with TNFalpha caused metabolic stress reflected by an increased lactate/pyruvate ratio (1.8 +/- 0.5-fold) and extracellular glutamate (79 +/- 8% increase). Inflammatory activation was observed with heightened IL-6 release (5.2 +/- 1.4-fold) and prostaglandin E2 production (14 +/- 3-fold). An autoregulatory response occurred with an 11.8 +/- 0.6-fold increase in sTNFRI shedding. Treatment with high doses of sTNFRII or ELP-sTNFRII reversed all changes. Values are expressed as the mean +/- standard deviation. CONCLUSIONS: These results demonstrate that TNFalpha stimulation of DRG explants yields a phenotype of neurotoxic metabolite release and inflammatory mediator expression. Coincubation with either sTNFRII or ELP-sTNFRII antagonizes TNFalpha activity to abrogate these changes, suggesting potential for therapeutic intervention to treat peripheral nerve inflammatory disease.


Assuntos
Gânglios Espinais , Radiculopatia/tratamento farmacológico , Receptores Tipo II do Fator de Necrose Tumoral/administração & dosagem , Animais , Citocinas/análise , Dinoprostona/análise , Portadores de Fármacos , Endotoxinas/análise , Técnicas In Vitro , Masculino , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA