Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499281

RESUMO

A multi-stage cold forging process was developed and complemented with finite element analysis (FEA) to manufacture a high-strength one-body input shaft with a long length body and no separate parts. FEA showed that the one-body input shaft was manufactured without any defects or fractures. Experiments, such as tensile, hardness, torsion, and fatigue tests, and microstructural characterization, were performed to compare the properties of the input shaft produced by the proposed method with those produced using the machining process. The ultimate tensile strength showed a 50% increase and the torque showed a 100 Nm increase, confirming that the input shaft manufactured using the proposed process is superior to that processed using the machining process. Thus, this study provides a proof-of-concept for the design and development of a multi-stage cold forging process to manufacture a one-body input shaft with improved mechanical properties and material recovery rate.

2.
Materials (Basel) ; 12(13)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288416

RESUMO

Rhodium is a rare material that is widely used in electrical and electronic components due to its excellent mechanical and electrical properties. Ultra-fine rhodium wires in particular are widely used in electronic components. In this study, a multi-pass wire drawing process was designed to fabricate ultra-fine pure rhodium wire with a diameter of 50.0 µm from an initial diameter of 80.0 µm, which is used as probe card pins. An elastic-plastic finite element (FE) analysis was performed to validate the pass schedule that was designed for this study. A fine wire drawing experiment was also carried out to verify the effectiveness of the designed process. As a result, the ultra-fine rhodium wire was fabricated using the design process without wire breaks and the diameter of the final drawn wire was 47.80 µm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...