Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3173, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676280

RESUMO

Electronic fibres have been considered one of the desired device platforms due to their dimensional compatibility with fabrics by weaving with yarns. However, a precise connecting process between each electronic fibre is essential to configure the desired electronic circuits or systems. Here, we present an integrated electronic fibre platform by fabricating electronic devices onto a one-dimensional microfibre substrate. Electronic components such as transistors, inverters, ring oscillators, and thermocouples are integrated together onto the outer surface of a fibre substrate with precise semiconductor and electrode patterns. Our results show that electronic components can be integrated on a single fibre with reliable operation. We evaluate the electronic properties of the chip on the fibre as a multifunctional electronic textile platform by testing their switching and data processing, as well as sensing or transducing units for detecting optical/thermal signals. The demonstration of the electronic fibre suggests significant proof of concepts for the realization of high performance with wearable electronic textile systems.

2.
ACS Appl Mater Interfaces ; 11(28): 25358-25368, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31264831

RESUMO

Organic electronics demand new platforms that can make integrated circuits and undergo mass production while maintaining diverse functions with high performance. The field-effect transistor has great potential to be a multifunctional device capable of sensing, data processing, data storage, and display. Currently, transistor-based devices cannot be considered intrinsic multifunctional devices because all installed functions are mutually coupled. Such incompatibilities are a crucial barrier to developing an all-in-one multifunctional device capable of driving each function individually. In this study, we focus on the decoupling of electric switching and data storage functions in an organic ferroelectric memory transistor. To overcome the incompatibility of each function, the high permittivity needed for electrical switching and the ferroelectricity needed for data storage become compatible by restricting the motion of poly(vinylidene fluoride-trifluoroethylene) via photocrosslinking with bis-perfluorobenzoazide. The two-in-one device consisting of a photocrosslinked ferroelectric layer exhibits reversible and individual dual-functional operation as a typical transistor with nonvolatile memory. Moreover, a p-MOS depletion load inverter composed of the two transistors with different threshold voltages is also demonstrated by simply changing only one of the threshold voltages by polarization switching. We believe that the two-in-one device will be considered a potential component of integrated organic logic circuits, including memory, in the future.

3.
ACS Appl Mater Interfaces ; 11(25): 22575-22582, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31148447

RESUMO

Wearable technology offers new ways to be more proactive about our health and surroundings in real time. For next-generation wearable systems, robust storage and recording media are required to monitor and process the essential electrical signals generated under various unpredictable strain conditions. Here, we report the first fibriform organic transistor memory integrated on a thin and flexible metal wire. A capillary tube coating system allows the formation of a thin and nanograined organic ferroelectric film on the wire. The uniform morphology imparts excellent switching stability (∼100 cycles), quasi-permanent retention (over 5 × 104 s), and low-voltage operation (below 5 V) to the fiber-shaped memory devices. When sewn in a stretchable textile fabric, the memory fiber achieves long retention time of more than 104 s with negligible degradation of memory window even under a constant diagonal strain of 100% that exhibits reliable data storage under tough environments. These results illustrate the possibility of the practical, wearable fiber memory for recording electronic signals in smart garment applications.

4.
Nano Converg ; 5(1): 20, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30101053

RESUMO

Low voltage operational organic transistors (< 4 V) based on pentacene were successfully fabricated with hybrid dielectric films composed of aluminum oxide using atomic layer deposition and various phosphonic acid-based self-assembled monolayers as the gate dielectrics. High capacitances up to 279 nF/cm2, low leakage current densities of 10-8 A/cm2 at 6 V, and high breakdown fields up to 7.5 MV/cm were obtained. The transistors with the octadecylphosphonic acid hybrid dielectric exhibited an improved saturation mobility of 0.58 cm2/Vs, a subthreshold slope of 151 mV/decade, a threshold voltage of - 1.84 V and an on-off current ratio of 106. The low surface energies of the self-assembled monolayers having non-polar terminal groups, such as methyl and pentafluorophenoxy, improved the carrier conduction of the transistors due to the pentacene growth with an edge-on orientation for low voltage operation. The pentafluorophenoxy end-group showed an accumulation of holes at the semiconductor-dielectric interface.

5.
ChemSusChem ; 10(19): 3780-3787, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28875552

RESUMO

The susceptibility of porphyrin derivatives to light-harvesting and charge-transport operations have enabled these materials to be employed in solar cell applications. The potential of porphyrin derivatives as hole-transporting materials (HTMs) for perovskite solar cells (PSCs) has recently been demonstrated, but knowledge of the relationships between the porphyrin structure and device performance remains insufficient. In this work, a series of novel zinc porphyrin (PZn) derivatives has been developed and employed as HTMs for low-temperature processed PSCs. Key to the design strategy is the incorporation of an electron-deficient pyridine moiety to down-shift the HOMO levels of porphyrin HTMs. The porphyrin HTMs incorporating diphenyl-2-pyridylamine (DPPA) have HOMO levels that are in good agreement with the perovskite active layers, thus facilitating hole transfers from the perovskite to the HTMs. The DPPA-containing zinc porphyrin-based PSCs gave the best performance, with efficiency levels comparable to those of PSCs using spiro-OMeTAD, a current state-of-the-art HTM. In particular, PZn-DPPA-based PSCs show superior air stability, in both doped and undoped forms, to spiro-OMeTAD based devices.


Assuntos
Compostos de Bifenilo/química , Compostos de Cálcio/química , Fontes de Energia Elétrica , Óxidos/química , Porfirinas/química , Energia Solar , Titânio/química , Eletroquímica
6.
Phys Chem Chem Phys ; 18(42): 29199-29207, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27731459

RESUMO

Recent progress in conducting polymer-based organic thermoelectric generators (OTEGs) has resulted in high performance due to high Seebeck coefficient, high electrical conductivity (σ), and low thermal conductivity obtained by chemically controlling the materials's redox levels. In addition to improving the properties of individual OTEGs to obtain high performance, the development of solution processes for the fabrication of OTEG modules is necessary to realize large thermoelectric voltage and low-cost mass production. However, the scarcity of good candidates for soluble organic n-type materials limits the use of π-leg module structures consisting of complementary elements of p- and n-type materials because of unbalanced transport coefficients that lead to power losses. In particular, the extremely low σ of n-type materials compared with that of p-type materials is a serious challenge. In this study, poly(pyridinium phenylene) (P(PymPh)) was tested as an n-type semiconductor in solution-processed OTEGs, and the carrier density was controlled by a solution-based chemical doping process using the dopant sodium naphthalenide, a well-known reductant. The electronic structures and doping mechanism of P(PymPh) were explored based on the changes in UV-Vis-IR absorption, ultraviolet photoelectron, and X-ray photoelectron spectra. By controlling the dopant concentration, we demonstrate a maximum n-type power factor of 0.81 µW m-1 K-2 with high σ, and at higher doping concentrations, a switch from n-type to p-type TE operation. This is one of the first cases of a switch in polarity just by increasing the concentration of the reductant and may open a new route for simplified fabrication of complementary organic layers.

7.
Adv Mater ; 28(46): 10275-10281, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27605061

RESUMO

A very high hole mobility of 15 cm2 V-1 s-1 along with negligible hysteresis are demonstrated in transistors with an organic-inorganic perovskite semiconductor. This high mobility results from the well-developed perovskite crystallites, improved conversion to perovskite, reduced hole trap density, and improved hole injection by employing a top-contact/top-gate structure with surface treatment and MoOx hole-injection layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...