Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 8(2): 1718-27, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24417308

RESUMO

The effect of electrochemical potential on the behavior of electrochemically deposited Au-Ag-Au bimetallic atomic scale junctions (ASJs) is addressed here. A common strategy for ASJ production begins with overgrown nanojunctions and uses electromigration to back-thin the junction. Here, these steps are carried out with the entire junction under electrochemical potential control, and the relationship between junction stability and applied potential is characterized. The control of electrochemical potential provides a reliable method of regulating the size of nanojunctions. In general, more anodic potentials decrease junction stability and increase the rate at which conductance decays. Conductance behavior under these labile conditions is principally determined by Ag oxidation potential, electrochemical potential-induced surface stress, and the nature of the adsorbate. Junctions fabricated at more cathodic potentials experience only slight changes in conductance, likely due to surface atom diffusion and stress-induced structural rearrangement. Electrochemical potential also plays a significant role in determining adsorption-desorption kinetics of surface pyridine at steady state at Au-Ag-Au ASJs, as revealed through fluctuation spectroscopy. Average cutoff frequencies increase at more anodic potentials, as does the width of the cutoff frequency distribution measured over 80 independent runs. Three reversible reactions--pyridine adsorption, Ag atom desorption, and Ag-pyridine complex dissolution--can occur on the surface, and the combination of the three can explain the observed results.

2.
J Am Chem Soc ; 135(11): 4522-8, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23432002

RESUMO

The chemical noise contained in conductance fluctuations resulting from adsorption and desorption of pyridine at Au-Ag-Au bimetallic atom-scale junctions (ASJs) exhibiting ballistic electron transport is studied using fluctuation spectroscopy. ASJs are fabricated by electrochemical Ag deposition in a Au nanogap to produce a high-conductance Ag quantum wire, followed by electromigration-induced thinning in pyridine solution to create stable ASJs. The conductance behavior of the resulting ASJs is analyzed by sequential autocorrelation and Fourier transform of the current-time data to yield the power spectral density (PSD). In these experiments the PSDs from Ag ASJs in pyridine exhibit two main frequency regions: 1/f noise originating from resistance fluctuations of the junction itself at low frequencies, and a Lorentzian noise component arising from molecular adsorption/desorption fluctuations at higher frequencies. The characteristic cutoff frequency of the Lorentzian noise component determines the relaxation time of molecular fluctuations, which, in turn, is sensitive to the kinetics of the adsorption/desorption process. The kinetics are found to depend on concentration and on the adsorption binding energy. The junction size (<5G0), on the other hand, does not affect the kinetics, as the cutoff frequency remains unchanged. Concentration-dependent adsorption free energies are interpreted as arising from a distribution of binding energies, N(E(b)), on the Ag ASJ. Other observations, such as long lifetime ASJs and two-level fluctuations in conductance, provide additional evidence for the integral role of the adsorbate in determining ASJ reorganization dynamics.

3.
ACS Nano ; 5(10): 8434-41, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21928783

RESUMO

Atom-scale junctions (ASJs) exhibit quantum conductance behavior and have potential both for fundamental studies of adsorbate-mediated conductance in mesoscopic conductors and as chemical sensors. Electrochemically fabricated ASJs, in particular, show the stability needed for molecular detection applications. However, achieving physically robust ASJs at high yield is a challenge because it is difficult to control the direction and kinetics of metal deposition. In this work, a novel electrochemical approach is reported, in which Au-Ag-Au bimetallic ASJs are reproducibly fabricated from an initially prepared Au nanogap by sequential overgrowth and self-limited thinning. Applying a potential across specially prepared Au nanoelectrodes in the presence of aqueous Ag(I) leads to preferential galvanic reactions resulting in the deposition of Ag and the formation of an atom-scale junction between the electrodes. An external resistor is added in series with the ASJ to control self-termination, and adjusting solution chemical potential (concentration) is used to mediate self-thinning of junctions. The result is long-lived, mechanically stable ASJs that, unlike previous constructions, are stable in flowing solution, as well as to changes in solution media. These bimetallic ASJs exhibit a number of behaviors characteristic of quantum structures, including long-lived fractional conductance states, that are interpreted to arise from two or more quantized ASJs in series.


Assuntos
Galvanoplastia/métodos , Ouro/química , Nanotecnologia/métodos , Prata/química , Condutividade Elétrica , Eletrodos , Fenômenos Mecânicos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...