Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(4)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35457898

RESUMO

An effective System-on-Chip (SoC) for smart Quality-of-Service (QoS) management over a virtual local area network (LAN) is presented in this study. The SoC is implemented by field programmable gate array (FPGA) for accelerating the delivery quality prediction for a service. The quality prediction is carried out by the general regression neural network (GRNN) algorithm based on a time-varying profile consisting of the past delivery records of the service. A novel record replacement algorithm is presented to update the profile, so that the bandwidth usage of the service can be effectively tracked by GRNN. Experimental results show that the SoC provides self-aware QoS management with low computation costs for applications over virtual LAN.

2.
Sensors (Basel) ; 19(18)2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31540184

RESUMO

The goal of this work is to present a novel continuous finger gesture recognition system based on flex sensors. The system is able to carry out accurate recognition of a sequence of gestures. Wireless smart gloves equipped with flex sensors were implemented for the collection of the training and testing sets. Given the sensory data acquired from the smart gloves, the gated recurrent unit (GRU) algorithm was then adopted for gesture spotting. During the training process for the GRU, the movements associated with different fingers and the transitions between two successive gestures were taken into consideration. On the basis of the gesture spotting results, the maximum a posteriori (MAP) estimation was carried out for the final gesture classification. Because of the effectiveness of the proposed spotting scheme, accurate gesture recognition was achieved even for complicated transitions between successive gestures. From the experimental results, it can be observed that the proposed system is an effective alternative for robust recognition of a sequence of finger gestures.


Assuntos
Dedos/fisiologia , Gestos , Monitorização Fisiológica/instrumentação , Tecnologia sem Fio , Algoritmos , Humanos
3.
Sensors (Basel) ; 17(10)2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28956859

RESUMO

This study aims to present an effective VLSI circuit for multi-channel spike sorting. The circuit supports the spike detection, feature extraction and classification operations. The detection circuit is implemented in accordance with the nonlinear energy operator algorithm. Both the peak detection and area computation operations are adopted for the realization of the hardware architecture for feature extraction. The resulting feature vectors are classified by a circuit for competitive learning (CL) neural networks. The CL circuit supports both online training and classification. In the proposed architecture, all the channels share the same detection, feature extraction, learning and classification circuits for a low area cost hardware implementation. The clock-gating technique is also employed for reducing the power dissipation. To evaluate the performance of the architecture, an application-specific integrated circuit (ASIC) implementation is presented. Experimental results demonstrate that the proposed circuit exhibits the advantages of a low chip area, a low power dissipation and a high classification success rate for spike sorting.

4.
Sensors (Basel) ; 16(12)2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27941631

RESUMO

The goal of this paper is to present a novel VLSI architecture for spike sorting with high classification accuracy, low area costs and low power consumption. A novel feature extraction algorithm with low computational complexities is proposed for the design of the architecture. In the feature extraction algorithm, a spike is separated into two portions based on its peak value. The area of each portion is then used as a feature. The algorithm is simple to implement and less susceptible to noise interference. Based on the algorithm, a novel architecture capable of identifying peak values and computing spike areas concurrently is proposed. To further accelerate the computation, a spike can be divided into a number of segments for the local feature computation. The local features are subsequently merged with the global ones by a simple hardware circuit. The architecture can also be easily operated in conjunction with the circuits for commonly-used spike detection algorithms, such as the Non-linear Energy Operator (NEO). The architecture has been implemented by an Application-Specific Integrated Circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture is well suited for real-time multi-channel spike detection and feature extraction requiring low hardware area costs, low power consumption and high classification accuracy.

5.
Sensors (Basel) ; 15(8): 19830-51, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26287193

RESUMO

A novel VLSI architecture for multi-channel online spike sorting is presented in this paper. In the architecture, the spike detection is based on nonlinear energy operator (NEO), and the feature extraction is carried out by the generalized Hebbian algorithm (GHA). To lower the power consumption and area costs of the circuits, all of the channels share the same core for spike detection and feature extraction operations. Each channel has dedicated buffers for storing the detected spikes and the principal components of that channel. The proposed circuit also contains a clock gating system supplying the clock to only the buffers of channels currently using the computation core to further reduce the power consumption. The architecture has been implemented by an application-specific integrated circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture has lower power consumption and hardware area costs for real-time multi-channel spike detection and feature extraction.


Assuntos
Potenciais de Ação/fisiologia , Algoritmos , Eletrônica , Software
6.
Appl Opt ; 54(1): A67-75, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25967024

RESUMO

This work presents a novel hardware phase-unwrapping architecture for digital holographic microscopy. The architecture is based on an iterative region-referenced algorithm because of its simplicity and effectiveness for phase unwrapping. The architecture therefore consumes fewer hardware resources for very large-scale integration implementation. In addition, a novel data reuse scheme is adopted for reducing the memory bandwidth required by the architecture. The architecture can then have fast computation speed for the iterative operations. The architecture has been implemented by field programmable gate array. It acts as a hardware accelerator in an embedded system developed by a network-on-chip platform for performance measurement. The superiorities of the proposed architecture have been confirmed by the experiments.

7.
Appl Opt ; 53(27): G64-73, 2014 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-25322138

RESUMO

A secure watermarking algorithm for hologram authentication is presented in this paper. The algorithm exploits the noise-like feature of holograms to randomly embed a watermark in the domain of the discrete cosine transform with marginal degradation in transparency. The pseudo random number (PRN) generators based on a cellular automata algorithm with asymmetrical and nonlocal connections are used for the random hiding. Each client has its own unique PRN generators for enhancing the watermark security. In the proposed algorithm, watermarks are also randomly generated to eliminate the requirements of prestoring watermarks in the clients and servers. An authentication scheme is then proposed for the algorithm with random watermark generation and hiding.

8.
Sensors (Basel) ; 14(6): 11049-69, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24960082

RESUMO

A novel feedback-based spike detection algorithm for noisy spike trains is presented in this paper. It uses the information extracted from the results of spike classification for the enhancement of spike detection. The algorithm performs template matching for spike detection by a normalized correlator. The detected spikes are then sorted by the OSortalgorithm. The mean of spikes of each cluster produced by the OSort algorithm is used as the template of the normalized correlator for subsequent detection. The automatic generation and updating of templates enhance the robustness of the spike detection to input trains with various spike waveforms and noise levels. Experimental results show that the proposed algorithm operating in conjunction with OSort is an efficient design for attaining high detection and classification accuracy for spike sorting.

9.
Sensors (Basel) ; 13(11): 14860-87, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24189331

RESUMO

This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA) and fuzzy C-means (FCM) algorithm are used for feature extraction and clustering, respectively. The employment of GHA allows efficient computation of principal components for subsequent clustering operations. The FCM is able to achieve near optimal clustering for spike sorting. Its performance is insensitive to the selection of initial cluster centers. The hardware implementations of GHA and FCM feature low area costs and high throughput. In the GHA architecture, the computation of different weight vectors share the same circuit for lowering the area costs. Moreover, in the FCM hardware implementation, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. To show the effectiveness of the circuit, the proposed architecture is physically implemented by field programmable gate array (FPGA). It is embedded in a System-on-Chip (SOC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient spike sorting design for attaining high classification correct rate and high speed computation.

10.
Sensors (Basel) ; 13(3): 3848-77, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23519346

RESUMO

This paper presents a novel VLSI architecture for the training of radial basis function (RBF) networks. The architecture contains the circuits for fuzzy C-means (FCM) and the recursive Least Mean Square (LMS) operations. The FCM circuit is designed for the training of centers in the hidden layer of the RBF network. The recursive LMS circuit is adopted for the training of connecting weights in the output layer. The architecture is implemented by the field programmable gate array (FPGA). It is used as a hardware accelerator in a system on programmable chip (SOPC) for real-time training and classification. Experimental results reveal that the proposed RBF architecture is an effective alternative for applications where fast and efficient RBF training is desired.


Assuntos
Algoritmos , Computadores , Redes Neurais de Computação , Lógica Fuzzy , Humanos , Análise dos Mínimos Quadrados
11.
Sensors (Basel) ; 12(5): 6244-68, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22778640

RESUMO

This paper presents a novel hardware architecture for principal component analysis. The architecture is based on the Generalized Hebbian Algorithm (GHA) because of its simplicity and effectiveness. The architecture is separated into three portions: the weight vector updating unit, the principal computation unit and the memory unit. In the weight vector updating unit, the computation of different synaptic weight vectors shares the same circuit for reducing the area costs. To show the effectiveness of the circuit, a texture classification system based on the proposed architecture is physically implemented by Field Programmable Gate Array (FPGA). It is embedded in a System-On-Programmable-Chip (SOPC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient design for attaining both high speed performance and low area costs.

12.
Sensors (Basel) ; 11(10): 9160-81, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163688

RESUMO

This paper presents a novel phase unwrapping architecture for accelerating the computational speed of digital holographic microscopy (DHM). A fast Fourier transform (FFT) based phase unwrapping algorithm providing a minimum squared error solution is adopted for hardware implementation because of its simplicity and robustness to noise. The proposed architecture is realized in a pipeline fashion to maximize throughput of the computation. Moreover, the number of hardware multipliers and dividers are minimized to reduce the hardware costs. The proposed architecture is used as a custom user logic in a system on programmable chip (SOPC) for physical performance measurement. Experimental results reveal that the proposed architecture is effective for expediting the computational speed while consuming low hardware resources for designing an embedded DHM system.


Assuntos
Algoritmos , Holografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Computadores , Análise de Fourier , Processamento de Sinais Assistido por Computador , Software , Fatores de Tempo
13.
Sensors (Basel) ; 11(7): 6697-718, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163980

RESUMO

This paper presents a novel VLSI architecture for image segmentation. The architecture is based on the fuzzy c-means algorithm with spatial constraint for reducing the misclassification rate. In the architecture, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. In addition, an efficient pipelined circuit is used for the updating process for accelerating the computational speed. Experimental results show that the the proposed circuit is an effective alternative for real-time image segmentation with low area cost and low misclassification rate.


Assuntos
Sistemas Computacionais , Lógica Fuzzy , Processamento de Imagem Assistida por Computador , Algoritmos
14.
IEEE Trans Inf Technol Biomed ; 7(1): 54-63, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12670019

RESUMO

In this paper, a novel medical data compression algorithm, termed layered set partitioning in hierarchical trees (LSPIHT) algorithm, is presented for telemedicine applications. In the LSPIHT, the encoded bit streams are divided into a number of layers for transmission and reconstruction. Starting from the base layer, by accumulating bit streams up to different enhancement layers, we can reconstruct medical data with various signal-to-noise ratios (SNRs) and/or resolutions. Receivers with distinct specifications can then share the same source encoder to reduce the complexity of telecommunication networks for telemedicine applications. Numerical results show that, besides having low network complexity, the LSPIHT attains better rate-distortion performance as compared with other algorithms for encoding medical data.


Assuntos
Telemedicina/métodos , Algoritmos , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...