Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 12(34): 17725-17737, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32558847

RESUMO

In this work, surface plasmonic welding of silver nanowires (AgNWs) by intense pulse light (IPL) combined with NIR was investigated. AgNWs were coated on a flexible PET (polyethylene terephthalate) substrate using a bar-coater. The coated AgNW films were welded at room temperature and under ambient conditions by white IPL from a xenon lamp, assisted with light from a UV-C (ultraviolet C) and NIR (near infra-red) lamp using an in-house multi-wavelength IPL welding system. In order to investigate the welding mechanism, in situ monitoring with a Wheatstone bridge electrical circuit was performed. The sheet resistance changes of AgNW films during the welding process were monitored under various IPL conditions (e.g. light energy and on-time) with and without UV-C and NIR light irradiation. The microstructure of the welded AgNW film and the interface between the AgNW film and the PET substrate were observed using a scanning electron microscope (SEM) and transmission electron microscope (TEM). COMSOL multi-physics simulations were conducted and compared with the in situ monitoring results to discuss the in-depth mechanism of the IPL welding of AgNWs and its dependence on the wavelength of light. From this study, the optimal IPL welding conditions and appropriate wavelength were suggested, and the optimized IPL welding process could produce AgNW film with a lower sheet resistance (45.2 Ω sq-1) and high transparency (96.65%) without damaging the PET substrate.

2.
ACS Appl Mater Interfaces ; 10(28): 24099-24107, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29940106

RESUMO

In this work, silver nanowires (AgNWs) printed on a polyethylene terephthalate substrate using a bar coater were welded via selective wavelength plasmonic flash light irradiation. To achieve high electrical conductivity and transparent characteristics, the wavelength of the flash white light was selectively chosen and irradiated by using high-pass, low-pass, and band-pass filters. The flash white light irradiation conditions such as on-time, off-time, and number of pulses were also optimized. The wavelength range (400-500 nm) corresponding to the plasmonic wavelength of the AgNW could efficiently weld the AgNW films and enhance its conductivity. To carry out in-depth study of the welding phenomena with respect to wavelength, a multiphysics COMSOL simulation was conducted. The welded AgNW films under selective plasmonic flash light welding conditions showed the lowest sheet resistance (51.275 Ω/sq) and noteworthy transmittance (95.3%). Finally, the AgNW film, which was welded by selective wavelength plasmonic flash light with optical filters, was successfully used to make a large area transparent heat film and dye-sensitized solar cells showing superior performances.

3.
Nanotechnology ; 27(20): 205704, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27070756

RESUMO

In this work, combined silver/copper nanoparticles were fabricated by the electrical explosion of a metal wire. In this method, a high electrical current passes through the metal wire with a high voltage. Consequently, the metal wire evaporates and metal nanoparticles are formed. The diameters of the silver and copper nanoparticles were controlled by changing the voltage conditions. The fabricated silver and copper nano-inks were printed on a flexible polyimide (PI) substrate and sintered at room temperature via a flash light process, using a xenon lamp and varying the light energy. The microstructures of the sintered silver and copper films were observed using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). To investigate the crystal phases of the flash-light-sintered silver and copper films, x-ray diffraction (XRD) was performed. The absorption wavelengths of the silver and copper nano-inks were measured using ultraviolet-visible spectroscopy (UV-vis). Furthermore, the resistivity of the sintered silver and copper films was measured using the four-point probe method and an alpha step. As a result, the fabricated Cu/Ag film shows a high electrical conductivity (4.06 µΩcm), which is comparable to the resistivity of bulk copper (1.68 µΩcm). In addition, the fabricated Cu/Ag nanoparticle film shows superior oxidation stability compared to the Cu nanoparticle film.

4.
ACS Appl Mater Interfaces ; 8(13): 8591-9, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26975337

RESUMO

In this work, an intensive plasmonic flash light sintering technique was developed by using a band-pass light filter matching the plasmonic wavelength of the copper nanoparticles. The sintering characteristics, such as resistivity and microstructure, of the copper nanoink films were studied as a function of the range of the wavelength employed in the flash white light sintering. The flash white light irradiation conditions (e.g., wavelength range, irradiation energy, pulse number, on-time, and off-time) were optimized to obtain a high conductivity of the copper nanoink films without causing damage to the polyimide substrate. The wavelength range corresponding to the plasmonic wavelength of the copper nanoparticles could efficiently sinter the copper nanoink and enhance its conductivity. Ultimately, the sintered copper nanoink films under optimal light sintering conditions showed the lowest resistivity (6.97 µΩ·cm), which was only 4.1 times higher than that of bulk copper films (1.68 µΩ·cm).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...