Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1408810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988639

RESUMO

The Persicaria amphibia complex exhibits significant morphological variation depending on its habitat, existing in either aquatic or terrestrial forms. Traditionally, four distinct elements have been recognized based on morphological features along with their distinct geographical distributions. Recent studies suggest that the Asian element may be genetically distinct from the European and American elements. However, a comprehensive study on the genetic differentiation among all four elements remains lacking. This study aimed to leverage whole plastid genome sequences and ITS2 haplotypes to comprehensively assess the genomic diversity within the P. amphibia complex. Notably, we included multiple individuals from New York State to resolve the ongoing debate regarding the taxonomic status of two American elements - whether they represent a single species or distinct entities. Our analysis revealed a well-supported monophyletic clade encompassing all four elements, endorsing their own section, Amphibia. Notably, the terrestrial form of the American element is sister to all other elements, suggesting it deserves its own species status. This reinstates its historical name, P. coccinea, separating it from the broader P. amphibia. Furthermore, distinct compositions of the ITS2 haplotypes differentiated the four elements, although the European element should be further investigated with more sampling. The most intriguing discovery is the identification of putative hybrids between the two American elements. In one population out of four putative hybrid populations, all three entities - the two parent species and their hybrid offspring - thrive together, showcasing a fascinating microcosm of ongoing evolutionary processes. Unraveling the intricate genetic tapestry within each American species and their hybrid populations remains a compelling next step. By delving deeper into their genetic makeup, we can gain a richer understanding of their evolutionary trajectories and the intricacies of their interactions. Finally, it is estimated that the two species of sect. Amphibia diverged approximately 4.02 million years ago during the Pliocene epoch, when there was a significant global cooling and drying trend.

2.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542284

RESUMO

Climate change, particularly drought stress, significantly impacts plant growth and development, necessitating the development of resilient crops. This study investigated physiological and molecular modulations to drought stress between diploid parent species and their polyploid progeny in the Brassica species. While no significant phenotypic differences were observed among the six species, drought stress reduced growth parameters by 2.4% and increased oxidative stress markers by 1.4-fold. Drought also triggered the expression of genes related to stress responses and led to the accumulation of specific metabolites. We also conducted the first study of perfluorooctane sulfonic acid (PFOS) levels in leaves as a drought indicator. Lower levels of PFOS accumulation were linked to plants taking in less water under drought conditions. Both diploid and polyploid species responded to drought stress similarly, but there was a wide range of variation in their responses. In particular, responses were less variable in polyploid species than in diploid species. This suggests that their additional genomic components acquired through polyploidy may improve their flexibility to modulate stress responses. Despite the hybrid vigor common in polyploid species, Brassica polyploids demonstrated intermediate responses to drought stress. Overall, this study lays the framework for future omics-level research, including transcriptome and proteomic studies, to deepen our understanding of drought tolerance mechanisms in Brassica species.


Assuntos
Brassica , Brassica/genética , Estresse Fisiológico/genética , Secas , Proteômica , Poliploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...