Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Inform ; 87: 96-107, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30268842

RESUMO

The process of discovering novel drugs to treat diseases requires a long time and high cost. It is important to understand side effects of drugs as well as their therapeutic effects, because these can seriously damage the patients due to unexpected actions of the derived candidate drugs. In order to overcome these limitations, computational methods for predicting the therapeutic effects and side effects have been proposed. In particular, text mining is a widely used technique in the field of systems biology, because it can discover hidden relationships between drugs, genes and diseases from a large amount of literature data. Compared with in vivo/in vitro experiments, text mining derives meaningful results with less time and cost. In this study, we propose an algorithm for predicting novel drug-phenotype associations and drug-side effect associations using topic modeling and natural language processing (NLP). We extract sentences in which drugs and genes co-occur from the abstracts of the literature and identify words that describe the relationship between them using NLP. Considering the characteristics of the identified words, we determine if the drug has an up-regulation effect or a down-regulation effect on the gene. Based on genes that affect drugs and their regulatory relationships, we group the frequently occurring genes and regulatory relationships into topics, and build a drug-topic probability matrix by calculating the score that the drug will have a topic using topic modeling. Using the matrix, a classifier is constructed for predicting the novel indications and side effects of drugs considering the characteristics of known drug-phenotype associations or drug-side effect associations. The proposed method predicts both indications and side effects with a single algorithm, and it can exclude drugs with serious side effects or side effects that patients do not want to experience from among the candidate drugs provided for the treatment of the phenotype. Furthermore, lists of novel candidate drugs for phenotypes and side effects can be continuously updated with our algorithm every time a document is added. More than a thousand documents are produced per day, and it is possible for our algorithm to efficiently derive candidate drugs because it requires less cost than the existing drug repositioning methods. The resource of PISTON is available at databio.gachon.ac.kr/tools/PISTON.


Assuntos
Mineração de Dados/métodos , Reposicionamento de Medicamentos/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Registros Eletrônicos de Saúde , Informática Médica/métodos , Processamento de Linguagem Natural , Algoritmos , Área Sob a Curva , Humanos , Fenótipo , Probabilidade , Biologia de Sistemas
2.
Mol Biosyst ; 13(9): 1788-1796, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28702565

RESUMO

Adverse drug reactions (ADRs) are one of the major concerns threatening public health and have resulted in failures in drug development. Thus, predicting ADRs and discovering the mechanisms underlying ADRs have become important tasks in pharmacovigilance. Identification of potential ADRs by computational approaches in the early stages would be advantageous in drug development. Here we propose a computational method that elucidates the action mechanisms of ADRs and predicts potential ADRs by utilizing ADR genes, drug features, and protein-protein interaction (PPI) networks. If some ADRs share similar features, there is a high possibility that they may appear together in a drug and share analogous mechanisms. Proceeding from this assumption, we clustered ADRs according to interactions of ADR genes in the PPI networks and the frequency of co-occurrence of ADRs in drugs. ADR clusters were verified based on a side effect database and literature data regarding whether ADRs have relevance to other ADRs in the same cluster. Gene networks shared by ADRs in each cluster were constructed by cumulating the shortest paths between drug target genes and ADR genes in the PPI network. We developed a classification model to predict potential ADRs using these gene networks shared by ADRs and calculated cross-validation AUC (area under the curve) values for each ADR cluster. In addition, in order to demonstrate correlations between gene networks shared by ADRs and ADRs in a cluster, we applied the Wilcoxon rank sum statistical test to the literature data and results of a Google query search. We attained statistically meaningful p-values (<0.05) for every ADR cluster. The results suggest that our approach provides insights into discovering the action mechanisms of ADRs and is a novel attempt to predict ADRs in a biological aspect.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/genética , Redes Reguladoras de Genes , Modelos Biológicos , Farmacogenética/métodos , Algoritmos , Análise por Conglomerados , Bases de Dados Genéticas , Bases de Dados de Produtos Farmacêuticos , Humanos , Curva ROC , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...