Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Numer Method Biomed Eng ; : e3839, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885939

RESUMO

This study aims to investigate how inert gas affects the partial pressure of alveolar and venous blood using a fast and accurate operator splitting method (OSM). Unlike previous complex methods, such as the finite element method (FEM), OSM effectively separates governing equations into smaller sub-problems, facilitating a better understanding of inert gas transport and exchange between blood capillaries and surrounding tissue. The governing equations were discretized with a fully implicit finite difference method (FDM), which enables the use of larger time steps. The model employed partial differential equations, considering convection-diffusion in blood and only diffusion in tissue. The study explores the impact of initial arterial pressure, breathing frequency, blood flow velocity, solubility, and diffusivity on the partial pressure of inert gas in blood and tissue. Additionally, the effects of anesthetic inert gas and oxygen on venous blood partial pressure were analyzed. Simulation results demonstrate that the high solubility and diffusivity of anesthetic inert gas lead to its prolonged presence in blood and tissue, resulting in lower partial pressure in venous blood. These findings enhance our understanding of inert gas interaction with alveolar/venous blood, with potential implications for medical diagnostics and therapies.

2.
J Supercomput ; 79(10): 11159-11169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36851920

RESUMO

The spread of the COVID-19 disease has had significant social and economic impacts all over the world. Numerous measures such as school closures, social distancing, and travel restrictions were implemented during the COVID-19 pandemic outbreak. Currently, as we move into the post-COVID-19 world, we must be prepared for another pandemic outbreak in the future. Having experienced the COVID-19 pandemic, it is imperative to ascertain the conclusion of the pandemic to return to normalcy and plan for the future. One of the beneficial features for deciding the termination of the pandemic disease is the small value of the case fatality rate (CFR) of coronavirus disease 2019 (COVID-19). There is a tendency of gradually decreasing CFR after several increases in CFR during the COVID-19 pandemic outbreak. However, it is difficult to capture the time-dependent CFR of a pandemic outbreak using a single exponential coefficient because it contains multiple exponential decays, i.e., fast and slow decays. Therefore, in this study, we develop a mathematical model for estimating and predicting the multiply exponentially decaying CFRs of the COVID-19 pandemic in different nations: the Republic of Korea, the USA, Japan, and the UK. We perform numerical experiments to validate the proposed method with COVID-19 data from the above-mentioned four nations.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36673975

RESUMO

In this article, we present a Monte Carlo simulation (MCS) to estimate the total cost required to control the spread of the COVID-19 pandemic by financial incentives. One of the greatest difficulties in controlling the spread of the COVID-19 pandemic is that most infected people are not identified and can transmit the virus to other people. Therefore, there is an urgent need to rapidly identify and isolate the infected people to avoid the further spread of COVID-19. To achieve this, we can consider providing a financial incentive for the people who voluntarily take the COVID-19 test and test positive. To prevent the abuse of the financial incentive policy, several conditions should be satisfied to receive the incentive. For example, an incentive is offered only if the recipients know who infected them. Based on the data obtained from epidemiological investigations, we calculated an estimated total cost of financial incentives for the policy by generating various possible infection routes using the estimated parameters and MCS. These results would help public health policymakers implement the proposed method to prevent the spread of the COVID-19 pandemic. In addition, the incentive policy can support various preparations such as hospital bed preparation, vaccine development, and so forth.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Motivação , Pandemias/prevenção & controle
4.
J Nonlinear Sci ; 32(6): 80, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36089998

RESUMO

In this study, we propose an explicit adaptive finite difference method (FDM) for the Cahn-Hilliard (CH) equation which describes the process of phase separation. The CH equation has been successfully utilized to model and simulate diverse field applications such as complex interfacial fluid flows and materials science. To numerically solve the CH equation fast and efficiently, we use the FDM and time-adaptive narrow-band domain. For the adaptive grid, we define a narrow-band domain including the interfacial transition layer of the phase field based on an undivided finite difference and solve the numerical scheme on the narrow-band domain. The proposed numerical scheme is based on an alternating direction explicit (ADE) method. To make the scheme conservative, we apply a mass correction algorithm after each temporal iteration step. To demonstrate the superior performance of the proposed adaptive FDM for the CH equation, we present two- and three-dimensional numerical experiments and compare them with those of other previous methods.

5.
J Healthc Eng ; 2021: 5877217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745502

RESUMO

In this study, we propose a time-dependent susceptible-unidentified infected-confirmed (tSUC) epidemic mathematical model for the COVID-19 pandemic, which has a time-dependent transmission parameter. Using the tSUC model with real confirmed data, we can estimate the number of unidentified infected cases. We can perform a long-time epidemic analysis from the beginning to the current pandemic of COVID-19 using the time-dependent parameter. To verify the performance of the proposed model, we present several numerical experiments. The computational test results confirm the usefulness of the proposed model in the analysis of the COVID-19 pandemic.


Assuntos
COVID-19 , Pandemias , Humanos , Modelos Teóricos , SARS-CoV-2
6.
Nanotechnology ; 28(16): 165201, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28273050

RESUMO

Hybrid-type transparent conductive electrodes (TCEs) were fabricated by coating copper (Cu) meshes with carbon nanotube (CNT) via electrophoretic deposition, and with nickel (Ni) via electroplating. For the fabricated electrodes, the effects of the coating with CNT and Ni on their transmittance and reflectance in the visible-light range, electrical sheet resistance, and chromatic parameters (e.g., redness and yellowness) were characterized. Also, an oxidation stability test was performed by exposing the electrodes to air for 20 d at 85 °C and 85% temperature and humidity conditions, respectively. It was discovered that the CNT coating considerably reduced the reflectance of the Cu meshes, and that the Ni coating effectively protected the Cu meshes against oxidation. Furthermore, after the coating with CNT, both the redness and yellowness of the Cu mesh regardless of the Ni coating approached almost zero, indicating a natural color. The experiment results confirmed that the hybrid-type Cu meshes with combined Ni-CNT coating improved characteristics in terms of reflectance, sheet resistance, oxidation stability, and color, superior to those of the primitive Cu mesh, and also simultaneously satisfied most of the requirements for TCEs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...