Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-988865

RESUMO

SARS-CoV-2 is a betacoronavirus that is responsible for the COVID-19 pandemic. The genome of SARS-CoV-2 was reported recently, but its transcriptomic architecture is unknown. Utilizing two complementary sequencing techniques, we here present a high-resolution map of the SARS-CoV-2 transcriptome and epitranscriptome. DNA nanoball sequencing shows that the transcriptome is highly complex owing to numerous recombination events, both canonical and noncanonical. In addition to the genomic RNA and subgenomic RNAs common in all coronaviruses, SARS-CoV-2 produces a large number of transcripts encoding unknown ORFs with fusion, deletion, and/or frameshift. Using nanopore direct RNA sequencing, we further find at least 41 RNA modification sites on viral transcripts, with the most frequent motif being AAGAA. Modified RNAs have shorter poly(A) tails than unmodified RNAs, suggesting a link between the internal modification and the 3' tail. Functional investigation of the unknown ORFs and RNA modifications discovered in this study will open new directions to our understanding of the life cycle and pathogenicity of SARS-CoV-2. HighlightsO_LIWe provide a high-resolution map of SARS-CoV-2 transcriptome and epitranscriptome using nanopore direct RNA sequencing and DNA nanoball sequencing. C_LIO_LIThe transcriptome is highly complex owing to numerous recombination events, both canonical and noncanonical. C_LIO_LIIn addition to the genomic and subgenomic RNAs common in all coronaviruses, SARS-CoV-2 produces transcripts encoding unknown ORFs. C_LIO_LIWe discover at least 41 potential RNA modification sites with an AAGAA motif. C_LI

2.
Experimental Neurobiology ; : 107-119, 2020.
Artigo | WPRIM (Pacífico Ocidental) | ID: wpr-832442

RESUMO

The severe acute respiratory coronavirus 2 (SARS-CoV-2), which emerged in December 2019 in Wuhan, China, has spread rapidly to over a dozen countries. Especially, the spike of case numbers in South Korea sparks pandemic worries. This virus is reported to spread mainly through personto- person contact via respiratory droplets generated by coughing and sneezing, or possibly through surface contaminated by people coughing or sneezing on them. More critically, there have been reports about the possibility of this virus to transmit even before a virus-carrying person to show symptoms. Therefore, a low-cost, easy-access protocol for early detection of this virus is desperately needed. Here, we have established a real-time reverse-transcription PCR (rtPCR)-based assay protocol composed of easy specimen self-collection from a subject via pharyngeal swab, Trizolbased RNA purification, and SYBR Green-based rtPCR. This protocol shows an accuracy and sensitivity limit of 1-10 virus particles as we tested with a known lentivirus. The cost for each sample is estimated to be less than 15 US dollars. Overall time it takes for an entire protocol is estimated to be less than 4 hours. We propose a cost-effective, quick-and-easy method for early detection of SARS-CoV-2 at any conventional Biosafety Level II laboratories that are equipped with a rtPCR machine. Our newly developed protocol should be helpful for a first-hand screening of the asymptomatic virus-carriers for further prevention of transmission and early intervention and treatment for the rapidly propagating virus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...