Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Sports Physiol Perform ; : 1-8, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019444

RESUMO

PURPOSE: Loss of muscle power has a significant impact on mobility in geriatric populations, so this study sought to determine the extent and time course of performance decline in power-centric events throughout the life span via retrospective analyses of masters and elite track-and-field data. METHODS: Four track-and-field events were selected based on maximal power output: the 100-m dash, long jump, high jump, and triple jump. Elite and masters athlete data were gathered from the World Masters Outdoor Championships and the International Amateur Athletic Federation World Athletics Championships (17,945 individual results). Data were analyzed by fitting individual and group results to quadratic and linear models. RESULTS: Average age of peak performance in all events was 27.8 (0.8) years for men and 28.3 (0.8) years for women. Athlete performance decline best matched a linear model for the 5 years following peak performance (mean R2 = .68 [.20]) and for ages 35-60, but best matched a quadratic model for ages 60-90 and 35-90 (mean R2 = .75 [.12]). The average rate of decline for the masters data ages 35-60 ranged from 0.55% per year for men's 100-m dash to 1.04% per year for women's long jump. A significant age × sex interaction existed between men and women, with men declining faster throughout life in all events except the 100-m dash. CONCLUSIONS: Performance decline begins in the early 30s and is linear through middle age. This pattern of decline provides a basis for further research on power-decline pathophysiology and preventive measures starting in the 30s.

2.
J Physiol ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004886

RESUMO

The purpose of this study was to examine the effects of 6 weeks of localized, muscle-focused (quadriceps femoris) passive heat therapy (PHT) on resistance artery function, exercise haemodynamics and exercise performance relative to knee extension (KE) exercise training (EX). We randomized 34 healthy adults (ages 18-36; n = 17 female, 17 male) to receive either PHT or sham heating sessions (120 min, 3 days/week), or EX (40 min, 3 days/week) over 6 weeks. Blood flow was assessed with Doppler ultrasound of the femoral artery during both passive leg movement (PLM) and a KE graded exercise test. Muscle biopsies were taken from the vastus lateralis at baseline and after 6 weeks. Peak blood flow during PLM increased to the same extent in both the EX (∼10.5% increase, P = 0.009) and PHT groups (∼8.5% increase, P = 0.044). Peak flow during knee extension exercise increased in EX (∼19%, P = 0.005), but did not change in PHT (P = 0.523) and decreased in SHAM (∼7%, P = 0.020). Peak vascular conductance during KE increased by ∼25% in EX (P = 0.030) and PHT (P = 0.012). KE peak power increased in EX by ∼27% (P = 0.001) but did not significantly change in PHT and SHAM groups. Expression of endothelial nitric oxide synthase increased significantly in both EX (P = 0.028) and PHT (P = 0.0095), but only EX resulted in increased angiogenesis. In conclusion, 6 weeks of localized PHT improved resistance artery function at rest and during exercise to the same extent as exercise training but did not yield significant improvements in performance. KEY POINTS: Many for whom exercise would be most beneficial are either unable to exercise or have a very low exercise tolerance. In these cases, an alternative treatment to combat declines in resistance artery function is needed. We tested the hypothesis that passive heat therapy (PHT) would increase resistance artery function, improve exercise haemodynamics and enhance exercise performance compared to a sham treatment, but less than aerobic exercise training. This report shows that 6 weeks of localized PHT improved resistance artery function at rest and during exercise to the same extent as exercise training but did not improve exercise performance. Additionally, muscle biopsy analyses revealed that endothelial nitric oxide synthase expression increased in both PHT and exercise training groups, but only exercise resulted in increased angiogenesis. Our data demonstrate the efficacy of applying passive heat as an alternative treatment to improve resistance artery function for those unable to receive the benefits of regular exercise.

3.
Scand J Med Sci Sports ; 34(6): e14675, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864455

RESUMO

BACKGROUND: Although individuals with anterior cruciate ligament reconstruction (ACLR) are at high risk for posttraumatic osteoarthritis, mechanisms underlying the relationship between running and knee cartilage health remain unclear. OBJECTIVE: We aimed to investigate how 30 min of running influences femoral cartilage thickness and composition and their relationships with running biomechanics in patients with ACLR and controls. METHODS: Twenty patients with ACLR (time post-ACLR: 14.6 ± 6.1 months) and 20 matched controls participated in the study. A running session required both groups to run for 30 min at a self-selected speed. Before and after running, we measured femoral cartilage thickness via ultrasound imaging. A MRI session consisted of T2 mapping. RESULTS: The ACLR group showed longer T2 relaxation times in the medial femoral condyle at resting compared with the control group (central: 51.2 ± 16.6 vs. 34.9 ± 13.2 ms, p = 0.006; posterior: 50.2 ± 10.1 vs. 39.8 ± 7.4 ms, p = 0.006). Following the run, the ACLR group showed greater deformation in the medial femoral cartilage than the control group (0.03 ± 0.01 vs. 0.01 ± 0.01 cm, p = 0.001). Additionally, the ACLR group showed significant negative correlations between resting T2 relaxation time in the medial femoral condyle and vertical impulse (standardized regression coefficients = -0.99 and p = 0.004) during running. CONCLUSIONS: Our findings suggest that those who are between 6 and 24 months post-ACLR have degraded cartilage composition and their cartilage deforms more due to running vGRF.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Cartilagem Articular , Fêmur , Imageamento por Ressonância Magnética , Corrida , Humanos , Cartilagem Articular/diagnóstico por imagem , Masculino , Fenômenos Biomecânicos , Feminino , Fêmur/diagnóstico por imagem , Adulto , Corrida/fisiologia , Adulto Jovem , Estudos de Casos e Controles , Ultrassonografia , Lesões do Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/fisiologia
4.
Exp Physiol ; 109(2): 165-174, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38189630

RESUMO

The Tour Divide (TD) is a 4385 km ultra-endurance bicycle race that follows the continental divide from Canada to Mexico. In this case study, we performed a comprehensive molecular and physiological profile before and after the completion of the TD. Assessments were performed 35 days before the start (Pre-TD) and ∼36 h after the finish (Post-TD). Total energy expenditure was assessed during the first 9 days by doubly labelled water (2 H2 18 O), abdominal and leg tissue volumes via MRI, and graded exercise tests to quantify fitness and substrate preference. Vastus lateralis muscle biopsies were taken to measure mitochondrial function via respirometry, and vascular function was assessed using Doppler ultrasound. The 47-year-old male subject took 16 days 7 h 45 min to complete the route. He rode an average of 16.8 h/day. Neither maximal O2 uptake nor maximal power output changed pre- to post-TD. Measurement of total energy expenditure and dietary recall records suggested maintenance of energy balance, which was supported by the lack of change in body weight. The subject lost both appendicular and trunk fat mass and gained leg lean mass pre- to post-TD. Skeletal muscle mitochondrial and vascular endothelial function decreased pre- to post-TD. Overall, exercise performance was maintained despite reductions in muscle mitochondrial and vascular endothelial function post-TD, suggesting a metabolic reserve in our highly trained athlete.


Assuntos
Ciclismo , Resistência Física , Masculino , Humanos , Pessoa de Meia-Idade , Resistência Física/fisiologia , Exercício Físico/fisiologia , Metabolismo Energético , Músculo Esquelético/fisiologia
5.
Med Sci Sports Exerc ; 56(6): 1108-1117, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38294822

RESUMO

PURPOSE: Unaccustomed eccentric (ECC) exercise evokes exercise-induced muscle damage (EIMD). Soreness, strength loss, and serum creatine kinase (CK) are often used to quantify EIMD severity. However, changes in these markers are not fully understood mechanistically. To test the hypothesis that muscle damage markers are associated with unique molecular processes, we correlated gene expression responses with variation in each marker post-ECC. METHODS: Vastus lateralis biopsies were collected from 35 young men 3 h post-ECC (10 sets of 10 maximal eccentric contractions; contralateral leg [CON] as control). Maximal isometric strength, soreness, and serum CK activity were assessed 24 h preexercise and every 24 h for 5 d post-ECC. Strength was also measured 10 min post-ECC. Over the 5 d after ECC, average peak strength loss was 51.5 ± 20%; average soreness increased from 0.9 ± 1.9 on a 100-mm visual analog scale to 39 ± 19; serum CK increased from 160 ± 130 to 1168 ± 3430 U·L -1 . Muscle RNA was used to generate gene expression profiles. Partek Genomics Suite correlated peak values of soreness, strength loss, and CK post-ECC with gene expression in ECC (relative to paired CON) using Pearson linear correlation ( P < 0.05) and repeated-measures ANOVA used to detect influence of ECC. RESULTS: After ECC, 2677 genes correlated with peak soreness, 3333 genes with peak strength loss, and 3077 genes with peak CK. Less than 1% overlap existed across all markers (16/9087). Unique genes included 2346 genes for peak soreness, 3032 genes for peak strength loss, and 2937 genes for peak CK. CONCLUSIONS: The largely unique molecular pathways associated with common indirect markers of EIMD indicate that each marker of "damage" represents unique mechanistic processes.


Assuntos
Biomarcadores , Creatina Quinase , Força Muscular , Mialgia , Humanos , Masculino , Mialgia/genética , Creatina Quinase/sangue , Adulto Jovem , Biomarcadores/sangue , Músculo Quadríceps/metabolismo , Adulto , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/lesões , Exercício Físico/fisiologia , Expressão Gênica
6.
Int J Hyperthermia ; 40(1): 2205066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37106474

RESUMO

The mitochondria are central to skeletal muscle metabolic health. Impaired mitochondrial function is associated with various muscle pathologies, including insulin resistance and muscle atrophy. As a result, continuous efforts are made to find ways to improve mitochondrial health in the context of disuse and disease. While exercise is known to cause robust improvements in mitochondrial health, not all individuals are able to exercise. This creates a need for alternate interventions which elicit some of the same benefits as exercise. Passive heating (i.e., application of heat in the absence of muscle contractions) is one potential intervention which has been shown to increase mitochondrial enzyme content and activity, and to improve mitochondrial respiration. Associated with increases in mitochondrial content and/or function, passive heating can also improve insulin sensitivity in the context of type II diabetes and preserve muscle mass in the face of limb disuse. This area of research remains in its infancy, with many questions yet to be answered about how to maximize the benefits of passive heating and elucidate the mechanisms by which heat stress affects muscle mitochondria.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Mitocôndrias/metabolismo , Músculo Esquelético/fisiologia , Mitocôndrias Musculares/metabolismo , Resposta ao Choque Térmico
7.
Exp Gerontol ; 169: 111974, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228835

RESUMO

Skeletal muscle injury in aged rodents is characterized by an asynchronous infiltration of pro- and anti-inflammatory macrophage waves, leading to improper and incomplete regeneration. It is unclear whether this aberration also occurs in aged human muscle. In this study, we quantified the macrophage responses in a human model of muscle damage and regeneration induced by electrical stimulation in 7 young and 21 older adults. At baseline, total resident macrophage (CD68+/DAPI+) content was not different between young and old subjects, but pro-inflammatory (CD206-/CD68+/DAPI+) macrophage content was lower in the old. Following damage, muscle Infiltration of CD206-/CD68+/DAPI+ macrophages was lower in old relative to young subjects. Further, only the increase in CD206-/CD68+ macrophages correlated with the change in muscle satellite cell content. Our data show that older individuals have a compromised macrophage response during muscle regeneration, pointing to an altered inflammatory response as a potential mechanism for reduced muscle regenerative efficacy in aged humans.


Assuntos
Macrófagos , Músculo Esquelético , Humanos , Idoso , Macrófagos/fisiologia , Músculo Esquelético/fisiologia , Envelhecimento , Regeneração , Cicatrização
8.
J Proteome Res ; 21(11): 2703-2714, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36099490

RESUMO

The synthesis of new proteins and the degradation of old proteins in vivo can be quantified in serial samples using metabolic isotope labeling to measure turnover. Because serial biopsies in humans are impractical, we set out to develop a method to calculate the turnover rates of proteins from single human biopsies. This method involved a new metabolic labeling approach and adjustments to the calculations used in previous work to calculate protein turnover. We demonstrate that using a nonequilibrium isotope enrichment strategy avoids the time dependent bias caused by variable lag in label delivery to different tissues observed in traditional metabolic labeling methods. Turnover rates are consistent for the same subject in biopsies from different labeling periods, and turnover rates calculated in this study are consistent with previously reported values. We also demonstrate that by measuring protein turnover we can determine where proteins are synthesized. In human subjects a significant difference in turnover rates differentiated proteins synthesized in the salivary glands versus those imported from the serum. We also provide a data analysis tool, DeuteRater-H, to calculate protein turnover using this nonequilibrium metabolic 2H2O method.


Assuntos
Isótopos , Proteínas , Humanos , Marcação por Isótopo/métodos , Proteínas/metabolismo , Proteólise , Biópsia/métodos
9.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35955635

RESUMO

AIM: Mild heat stress can improve mitochondrial respiratory capacity in skeletal muscle. However, long-term heat interventions are scarce, and the effects of heat therapy need to be understood in the context of the adaptations which follow the more complex combination of stimuli from exercise training. The purpose of this work was to compare the effects of 6 weeks of localized heat therapy on human skeletal muscle mitochondria to single-leg interval training. METHODS: Thirty-five subjects were assigned to receive sham therapy, short-wave diathermy heat therapy, or single-leg interval exercise training, localized to the quadriceps muscles of the right leg. All interventions took place 3 times per week. Muscle biopsies were performed at baseline, and after 3 and 6 weeks of intervention. Mitochondrial respiratory capacity was assessed on permeabilized muscle fibers via high-resolution respirometry. RESULTS: The primary finding of this work was that heat therapy and exercise training significantly improved mitochondrial respiratory capacity by 24.8 ± 6.2% and 27.9 ± 8.7%, respectively (p < 0.05). Fatty acid oxidation and citrate synthase activity were also increased following exercise training by 29.5 ± 6.8% and 19.0 ± 7.4%, respectively (p < 0.05). However, contrary to our hypothesis, heat therapy did not increase fatty acid oxidation or citrate synthase activity. CONCLUSION: Six weeks of muscle-localized heat therapy significantly improves mitochondrial respiratory capacity, comparable to exercise training. However, unlike exercise, heat does not improve fatty acid oxidation capacity.


Assuntos
Ácidos Graxos/metabolismo , Mitocôndrias Musculares , Mitocôndrias , Citrato (si)-Sintase/metabolismo , Temperatura Alta/uso terapêutico , Humanos , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Oxirredução
10.
J Physiol ; 599(20): 4581-4596, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34487346

RESUMO

Limb disuse has profound negative consequences on both vascular and skeletal muscle health. The purpose of this investigation was to determine whether repeated application of passive heat, applied to the knee extensor muscles, could mitigate the detrimental effects of limb disuse on vascular function. This was a randomized, single-blinded placebo controlled trial. Twenty-one healthy volunteers (10 women, 11 men) underwent 10 days of unilateral lower limb immobilization and were randomized to receive either a daily 2 h sham (Imm) or heat treatment (Imm+H) using pulsed shortwave diathermy. Vascular function was assessed with Doppler ultrasound of the femoral artery and the passive leg movement technique. Biopsies of the vastus lateralis were also collected before and after the intervention. In Imm, femoral artery diameter (FAD) and PLM-induced hyperaemia (HYP) were reduced by 7.3% and 34.3%, respectively. Changes in both FAD (4% decrease; P = 0.0006) and HYP (7.8% increase; P = 0.003) were significantly attenuated in Imm+H. Vastus lateralis capillary density was not altered in either group. Immobilization significantly decreased expression of vascular endothelial growth factor (P = 0.006) and Akt (P = 0.001), and increased expression of angiopoietin 2 (P = 0.0004) over time, with no differences found between groups. Immobilization also upregulated elements associated with remodelling of the extracellular matrix, including matrix metalloproteinase 2 (P = 0.0046) and fibronectin (P = 0.0163), with no differences found between groups. In conclusion, limb immobilization impairs vascular endothelial function, but daily muscle heating via diathermy is sufficient to counteract this adverse effect. These are the first data to indicate that passive muscle heating mitigates disuse-induced vascular dysfunction. KEY POINTS: Limb disuse can be unavoidable for many of reasons (i.e. injury, bed rest, post-surgery), and can have significant adverse consequences for muscular and vascular health. We tested the hypothesis that declines in vascular function that result from lower limb immobilization could be mitigated by application of passive heat therapy. This report shows that 10 days of limb immobilization significantly decreases resistance artery diameter and vascular function, and that application of passive heat to the knee extensor muscle group each day for 2 h per day is sufficient to attenuate these declines. Additionally, muscle biopsy analyses showed that 10 days of heat therapy does not alter capillary density of the muscle, but upregulates multiple factors indicative of a vascular remodelling response. Our data demonstrate the utility of passive heat as a therapeutic tool to mitigate losses in lower limb vascular function that occur from disuse.


Assuntos
Calefação , Metaloproteinase 2 da Matriz , Feminino , Humanos , Imobilização , Masculino , Força Muscular , Músculo Esquelético , Atrofia Muscular/patologia , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/patologia , Fator A de Crescimento do Endotélio Vascular
11.
Med Sci Sports Exerc ; 53(11): 2363-2373, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34107508

RESUMO

PURPOSE: Very little research has investigated the effects of ultraendurance exercise on the bioenergetic status of muscle. The primary objective of this case study was to characterize the changes that occur in skeletal muscle mitochondria in response to a 100-km ultramarathon in monozygotic twins. A second objective was to determine whether mitochondrial function is altered by consuming a periodized low-carbohydrate, high-fat diet during training compared with a high-carbohydrate diet. METHODS: One pair of male monozygotic twins ran 100 km on treadmills after 4 wk of training on either a high-carbohydrate or periodized low-carbohydrate, high-fat diet. Muscle biopsies were collected 4 wk before the run, as well as 4 and 52 h postrun. Blood draws were also performed immediately before as well as 4 and 52 h after the run. RESULTS: Four hours postrun, respiratory capacity, citrate synthase activity, and mitochondrial complex protein content were decreased. Two days later, both twins showed signs of rapid recovery in several of these measures. Furthermore, blood levels of creatine phosphokinase, C-reactive protein, and aspartate transaminase were elevated 4 h after the run but partially recovered 2 d later. CONCLUSION: Although there were some differences between the twins, the primary finding is that there is significant mitochondrial impairment induced by running 100 km, which rapidly recovers within 2 d. These results provide ample rationale for future investigations of the effects of ultraendurance activity on mitochondrial function.


Assuntos
Corrida de Maratona/fisiologia , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Gêmeos Monozigóticos , Aspartato Aminotransferases/metabolismo , Proteína C-Reativa/metabolismo , Creatina Quinase/sangue , Dieta da Carga de Carboidratos , Dieta Rica em Proteínas e Pobre em Carboidratos , Metabolismo Energético , Humanos , Masculino , Consumo de Oxigênio , Condicionamento Físico Animal , Adulto Jovem
12.
J Sport Rehabil ; 30(4): 538-544, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33120356

RESUMO

CONTEXT: Low current intensity iontophoresis treatments have increased skin perfusion over 700% from baseline potentially altering drug clearance from or diffusion to the targeted area. OBJECTIVE: To determine the effects of a preceding 10-minute ice massage on subcutaneous dexamethasone sodium phosphate (Dex-P) concentration and skin perfusion during and after a 4-mA iontophoresis treatment. DESIGN: Controlled laboratory study. SETTING: Research laboratory. PATIENTS OR OTHER PARTICIPANTS: Twenty-four participants (male = 12, female = 12; age = 25.6 [4.5] y, height = 173.9 [8.51] cm, mass = 76.11 [16.84] kg). INTERVENTION(S): Participants were randomly assigned into 2 groups: (1) pretreatment 10-minute ice massage and (2) no pretreatment ice massage. Treatment consisted of an 80-mA·minute (4 mA, 20 min) Dex-P iontophoresis treatment. Microdialysis probes (3 mm deep in the forearm) were used to assess Dex-P, dexamethasone (Dex), and its metabolite (Dex-Met) concentrations. Skin perfusion was measured using laser Doppler flowmetry. MAIN OUTCOME MEASURE(S): Microdialysis samples were collected at baseline, at conclusion of treatment, and every 20 minutes posttreatment for 60 minutes. Samples were analyzed to determine Dex-Total (Dex-Total = Dex-P + Dex + Dex-Met). Skin perfusion was calculated as a percentage change from baseline. A mixed-design analysis of variance was used to determine Dex-Total and skin perfusion difference between groups overtime. RESULTS: There was no difference between groups (P = .476), but [Dex-Total] significantly increased over the course of the iontophoresis and posttreatment time (P < .001). Dex-P was measured in 18 of 24 participants with a mean concentration of 0.67 (1.09) µg/mL. Skin perfusion was significantly greater in the no ice treatment group (P = .002). Peak skin perfusion reached 27.74% (47.49%) and 117.39% (103.45%) from baseline for the ice and no ice groups, respectively. CONCLUSIONS: Ice massage prior to iontophoresis does not alter the tissue [Dex-Total] even with less skin perfusion.


Assuntos
Crioterapia/métodos , Dexametasona/análogos & derivados , Glucocorticoides/administração & dosagem , Iontoforese/métodos , Massagem/métodos , Adulto , Análise de Variância , Dexametasona/administração & dosagem , Dexametasona/farmacocinética , Feminino , Glucocorticoides/farmacocinética , Humanos , Gelo , Masculino , Microdiálise , Pele/metabolismo , Fatores de Tempo
13.
Int J Mol Sci ; 21(17)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872407

RESUMO

OBJECTIVE: The rampant growth of obesity worldwide has stimulated explosive research into human metabolism. Energy expenditure has been shown to be altered by diets differing in macronutrient composition, with low-carbohydrate, ketogenic diets eliciting a significant increase over other interventions. The central aim of this study was to explore the effects of the ketone ß-hydroxybutyrate (ßHB) on mitochondrial bioenergetics in adipose tissue. METHODS: We employed three distinct systems-namely, cell, rodent, and human models. Following exposure to elevated ßHB, we obtained adipose tissue to quantify mitochondrial function. RESULTS: In every model, ßHB robustly increased mitochondrial respiration, including an increase of roughly 91% in cultured adipocytes, 113% in rodent subcutaneous adipose tissue (SAT), and 128% in human SAT. However, this occurred without a commensurate increase in adipose ATP production. Furthermore, in cultured adipocytes and rodent adipose, we quantified and observed an increase in the gene expression involved in mitochondrial biogenesis and uncoupling status following ßHB exposure. CONCLUSIONS: In conclusion, ßHB increases mitochondrial respiration, but not ATP production, in mammalian adipocytes, indicating altered mitochondrial coupling. These findings may partly explain the increased metabolic rate evident in states of elevated ketones, and may facilitate the development of novel anti-obesity interventions.


Assuntos
Ácido 3-Hidroxibutírico/administração & dosagem , Adipócitos/citologia , Mitocôndrias/metabolismo , Gordura Subcutânea/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Células 3T3-L1 , Trifosfato de Adenosina/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adulto , Animais , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Ratos , Gordura Subcutânea/efeitos dos fármacos
14.
J Appl Physiol (1985) ; 129(2): 353-365, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32644914

RESUMO

Athletes use cold water immersion, cryotherapy chambers, or icing in the belief that these strategies improve postexercise recovery and promote greater adaptations to training. A number of studies have systematically investigated how regular cold water immersion influences long-term performance and muscle adaptations. The effects of regular cold water immersion after endurance or high-intensity interval training on aerobic capacity, lactate threshold, power output, and time trial performance are equivocal. Evidence for changes in angiogenesis and mitochondrial biogenesis in muscle in response to regular cold water immersion is also mixed. More consistent evidence is available that regular cold water immersion after strength training attenuates gains in muscle mass and strength. These effects are attributable to reduced activation of satellite cells, ribosomal biogenesis, anabolic signaling, and muscle protein synthesis. Athletes use passive heating to warm up before competition or improve postexercise recovery. Emerging evidence indicates that regular exposure to ambient heat, wearing garments perfused with hot water, or microwave diathermy can mimic the effects of endurance training by stimulating angiogenesis and mitochondrial biogenesis in muscle. Some passive heating applications may also mitigate muscle atrophy through their effects on mitochondrial biogenesis and muscle fiber hypertrophy. More research is needed to consolidate these findings, however. Future research in this field should focus on 1) the optimal modality, temperature, duration, and frequency of cooling and heating to enhance long-term performance and muscle adaptations and 2) whether molecular and morphological changes in muscle in response to cooling and heating applications translate to improvements in exercise performance.


Assuntos
Calefação , Treinamento Resistido , Temperatura Baixa , Exercício Físico , Humanos , Imersão , Músculo Esquelético , Músculos , Água
15.
J Strength Cond Res ; 34(4): 1123-1132, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30399118

RESUMO

Magoffin, RD, Parcell, AC, Hyldahl, RD, Fellingham, GW, Hopkins, JT, and Feland, JB. Whole-body vibration as a warm-up before exercise-induced muscle damage on symptoms of delayed-onset muscle soreness in trained subjects. J Strength Cond Res 34(4): 1123-1132, 2020-There is no clear scientific evidence that whole-body vibration (WBV) used as a warm-up before performing eccentric exercise mitigates delayed-onset muscle soreness (DOMS) and speeds strength loss recovery. These benefits were observed primarily in nonresistance-trained individuals. The aim of this study was to determine whether WBV could mitigate soreness and expedite strength recovery for resistance-trained individuals when used as a warm-up before eccentric exercise. Thirty resistance-trained males completed 300 maximal eccentric contractions of the quadriceps after warming up with (WBV) or without (CON) WBV. Both CON and WBV experienced significant isometric (26.3 and 30.2%, respectively) and dynamic (50.9 and 46.4%, respectively) strength loss immediately after exercise. Isometric strength was significantly depressed after 24 hours in the CON group (8.2% p < 0.02), but not in the WBV group (5.9% p = 0.7). Isometric strength was no longer significantly depressed after 48 hours in the CON group (6.1% p < 0.07) or the WBV group (4.1% p = 0.20). Dynamic strength was significantly decreased in both the CON and WBV groups at 24 hours (17.7% p < 0.001 and 15.5% p < 0.001, respectively) and 48 hours (17.1% p < 0.01 and 13.6% p < 0.002), but only significant for the CON at 1 week after exercise (8.6% p = 0.05). Pain as measured by a visual analog scale was significant in both groups at 24 and 48 hours after exercise, but WBV experienced significantly less soreness than the CON group after 24 hours (28 vs. 46 mm p < 0.01, respectively) and 48 hours (38 vs. 50 mm p < 0.01). Pain pressure threshold increased significantly in both groups, but there was no difference between groups. These results suggest the use of WBV before eccentric exercise mildly mitigates DOMS in trained individuals. Application of WBV can function as a quick mode of warm-up before resistance training and can decrease pain perception from DOMS. This may be beneficial to athletes undergoing a heavy strength training phase where DOMS is likely.


Assuntos
Mialgia/prevenção & controle , Treinamento Resistido/métodos , Vibração , Exercício de Aquecimento/fisiologia , Adolescente , Adulto , Atletas , Feminino , Humanos , Masculino , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Limiar da Dor , Modalidades de Fisioterapia , Músculo Quadríceps/fisiologia , Fatores de Tempo , Adulto Jovem
16.
Med Sci Sports Exerc ; 52(6): 1280-1293, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31876672

RESUMO

PURPOSE: The purpose of this investigation was to characterize skeletal muscle T-cell accumulation after contraction-induced muscle damage and test the hypothesis that T cells contribute to postdamage muscle protection (i.e., the repeated bout effect) in a way reminiscent of their role in adaptive immunity. METHODS: In vivo lengthening contractions were used to model the repeated bout effect and contralateral repeated bout effect in rats. Intramuscular T-cell subsets were characterized by flow cytometry after single and repeated bouts of lengthening contractions, and an adoptive T-cell transfer experiment was done to test whether T cells from muscle damage-experienced rats can confer protection from injury to damage-naive rats. RESULTS: Electrically stimulated lengthening contractions elicited the repeated bout effect, but not the contralateral repeated bout effect. Although leukocytes (CD45+) were scarce in undamaged muscle (2.1% of all cells), substantially more (63% of all cells) were observed after a single bout of lengthening contractions. Within the leukocyte population were several subsets of T cells, including conventional CD4+, CD8+, memory, and regulatory T cells. In contrast, a minimal increase in T cells was observed after a second bout of lengthening contractions. Conventional CD4+ T cells (FoxP3-) were the most abundant subset in muscle after lengthening contractions. Adoptive T-cell transfer from damage-experienced rats did not confer protection to damage-naive recipient rats. CONCLUSIONS: The robust T-cell accumulation, particularly the CD4 subset, after contraction-induced damage suggests a role for these cells in muscle repair and adaptation to muscle damaging contractions. Moreover, T cells are unlikely to mediate the protective adaptations of the repeated bout effect in a manner similar to their role in adaptive immunity.


Assuntos
Músculo Esquelético/imunologia , Músculo Esquelético/lesões , Condicionamento Físico Animal/fisiologia , Linfócitos T/fisiologia , Adaptação Fisiológica , Transferência Adotiva , Animais , Estimulação Elétrica , Contagem de Linfócitos , Masculino , Contração Muscular , Músculo Esquelético/patologia , Ratos Endogâmicos Lew , Subpopulações de Linfócitos T
17.
FASEB J ; 33(9): 10353-10368, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31208207

RESUMO

The purpose of this study was to test the hypothesis that macrophage polarization is altered in old compared to young skeletal muscle, possibly contributing to the poor satellite cell response observed in older muscle tissue. Muscle biopsies were collected prior to and at 3, 24, and 72 h following a muscle-damaging exercise in young and old individuals. Immunohistochemistry was used to measure i.m. macrophage content and phenotype, and cell culture experiments tested macrophage behavior and influence on primary myoblasts from older individuals. We found that macrophage infiltration was similar between groups at 24 (young: 3712 ± 2407 vs. old: 5035 ± 2978 cells/mm3) and 72 (young: 4326 ± 2622 vs. old: 5287 ± 2248 cells/mm3) hours postdamage, yet the proportion of macrophages that expressed the proinflammatory marker CD11b were markedly lower in the older subjects (young: 74.5 ± 15 vs. old: 52.6 ± 17%). This finding was coupled with a greater overall proportion of CD206+, anti-inflammatory macrophages in the old (group: P = 0.0005). We further demonstrate in vitro that proliferation, and in some cases differentiation, of old primary human myoblasts increase as much as 30% when exposed to a young macrophage-conditioned environment. Collectively, the data suggest that old macrophages appear less capable of adapting and maintaining inflammatory function, which may contribute to poor satellite cell activation and delayed recovery from muscle damage.-Sorensen, J. R., Kaluhiokalani, J. P., Hafen, P. S., Deyhle, M. R., Parcell, A. C., Hyldahl, R. D. An altered response in macrophage phenotype following damage in aged human skeletal muscle: implications for skeletal muscle repair.


Assuntos
Envelhecimento/patologia , Exercício Físico/fisiologia , Ativação de Macrófagos/fisiologia , Macrófagos/patologia , Músculo Esquelético/fisiopatologia , Mioblastos/patologia , Adulto , Idoso , Células Cultivadas , Feminino , Humanos , Masculino , Músculo Esquelético/lesões , Fenótipo , Adulto Jovem
18.
J Appl Physiol (1985) ; 127(1): 47-57, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31046520

RESUMO

Skeletal muscle immobilization leads to atrophy, decreased metabolic health, and substantial losses in function. Animal models suggest that heat stress can provide protection against atrophy in skeletal muscle. This study investigated the effects of daily heat therapy on human skeletal muscle subjected to 10 days of immobilization. Muscle biopsies were collected, and MRIs were analyzed from the vastus lateralis of 23 healthy volunteers (11 women, 12 men) before and after either 10 days of immobilization with a daily sham treatment (Imm) or with a targeted, daily 2-h heat treatment using pulsed shortwave diathermy (Imm + H). Diathermy increased intramuscular temperature 4.2 ± 0.29°C (P < 0.0001), with no change during sham treatment. As a result, heat shock protein (HSP)70 and HSP90 increased (P < 0.05) following Imm + H (25 ± 6.6 and 20 ± 7.4%, respectively) but were unaltered with Imm only. Heat treatment prevented the immobilization-induced loss of coupled (-27 ± 5.2% vs. -8 ± 6.0%, P = 0.0041) and uncoupled (-25 ± 7.0% vs. -10 ± 3.9%, P = 0.0302) myofiber respiratory capacity. Likewise, heat treatment prevented the immobilization-induced loss of proteins associated with all five mitochondrial respiratory complexes (P < 0.05). Furthermore, decreases in muscle cross-sectional area following Imm were greater than Imm + H at both the level of the whole muscle (-7.6 ± 0.96% vs. -4.5 ± 1.09%, P = 0.0374) and myofiber (-10.8 ± 1.52% vs. -5.8 ± 1.49%, P = 0.0322). Our findings demonstrate that daily heat treatments, applied during 10 days of immobilization, prevent the loss of mitochondrial function and attenuate atrophy in human skeletal muscle. NEW & NOTEWORTHY Limb immobilization results in substantial decreases in skeletal muscle size, function, and metabolic capacity. To date, there are few, if any, interventions to prevent the deleterious effects of limb immobilization on skeletal muscle health. Heat stress has been shown to elicit a stress response, resulting in increased heat shock protein expression and improved mitochondrial function. We show that during 10 days of lower-limb immobilization in humans, daily exposure to heat stress maintains mitochondrial respiratory capacity and attenuates atrophy in skeletal muscle. Our findings suggest that heat stress may serve as an effective therapeutic strategy to attenuate the decreases of muscle mass and metabolic function that accompany periods of disuse.


Assuntos
Resposta ao Choque Térmico/fisiologia , Imobilização/fisiologia , Mitocôndrias Musculares/fisiologia , Mitocôndrias/fisiologia , Atrofia Muscular/fisiopatologia , Músculo Quadríceps/fisiologia , Adulto , Feminino , Temperatura Alta , Humanos , Masculino , Força Muscular/fisiologia , Adulto Jovem
19.
Front Physiol ; 9: 768, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29973887

RESUMO

Skeletal muscle is prone to damage from a range of stimuli, and initiates a robust repair process that requires the participation of immune cells. Among the more well characterized immune cells involved in muscle repair are those of the myeloid lineage, including neutrophils, macrophages, monocytes, and eosinophils. More recently, studies have begun to elucidate the role of the lymphoid-derived immune cells, most notably T lymphocytes (T-cells), in the complex processes of muscle repair. Though T-cells have been traditionally been associated with pathological degeneration of skeletal muscle in disease, recent studies show that T-cells are instrumental in the repair/regeneration process following severe muscle damage in mice. Furthermore, a few studies using basic immunohistochemical assays have shown that T-cells accumulate in human skeletal muscle in the days following contraction-induced muscle damage. The functional significance of T-cells in the repair and adaptation process following contraction-induce muscle damage remains uncertain, and is an active area of intense investigation. This mini-review summarizes recent findings on the involvement of T-cells in skeletal muscle repair.

20.
J Appl Physiol (1985) ; 125(5): 1447-1455, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30024339

RESUMO

The heat stress response is associated with several beneficial adaptations that promote cell health and survival. Specifically, in vitro and animal investigations suggest that repeated exposures to a mild heat stress (~40°C) elicit positive mitochondrial adaptations in skeletal muscle comparable to those observed with exercise. To assess whether such adaptations translate to human skeletal muscle, we produced local, deep tissue heating of the vastus lateralis via pulsed shortwave diathermy in 20 men and women ( n = 10 men; n = 10 women). Diathermy increased muscle temperature by 3.9°C within 30 min of application. Immediately following a single 2-h heating session, we observed increased phosphorylation of AMP-activated protein kinase and ERK1/2 but not of p38 MAPK or JNK. Following repeated heat exposures (2 h daily for 6 consecutive days), we observed a significant cellular heat stress response, as heat shock protein 70 and 90 increased 45% and 38%, respectively. In addition, peroxisome proliferator-activated receptor gamma, coactivator-1 alpha and mitochondrial electron transport protein complexes I and V expression were increased after heating. These increases were accompanied by augmentation of maximal coupled and uncoupled respiratory capacity, measured via high-resolution respirometry. Our data provide the first evidence that mitochondrial adaptation can be elicited in human skeletal muscle in response to repeated exposures to mild heat stress. NEW & NOTEWORTHY Heat stress has been shown to elicit mitochondrial adaptations in cell culture and animal research. We used pulsed shortwave diathermy to produce deep tissue heating and explore whether beneficial mitochondrial adaptations would translate to human skeletal muscle in vivo. We report, for the first time, positive mitochondrial adaptations in human skeletal muscle following recurrent heat stress. The results of this study have clinical implications for many conditions characterized by diminished skeletal muscle mitochondrial function.


Assuntos
Adaptação Fisiológica , Resposta ao Choque Térmico , Mitocôndrias Musculares/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Músculo Esquelético/metabolismo , Biogênese de Organelas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...