Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 292(3): 320-32, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19248164

RESUMO

Quantification of microvascular remodeling as a meaningful discovery tool requires mapping and measurement of site-specific changes within vascular trees and networks. Vessel density and other critical vascular parameters are often modulated by molecular regulators as determined by local vascular architecture. For example, enlargement of vessel diameter by vascular endothelial growth factor (VEGF) is restricted to specific generations of vessel branching (Parsons-Wingerter et al., Microvascular Research72: 91, 2006). The averaging of vessel diameter over many successively smaller generations is therefore not particularly useful. The newly automated, user-interactive software VESsel GENeration Analysis (VESGEN) quantifies major vessel parameters within two-dimensional (2D) vascular trees, networks, and tree-network composites. This report reviews application of VESGEN 2D to angiogenic and lymphangiogenic tissues that includes the human and murine retina, embryonic coronary vessels, and avian chorioallantoic membrane. Software output includes colorized image maps with quantification of local vessel diameter, fractal dimension, tortuosity, and avascular spacing. The density of parameters such as vessel area, length, number, and branch point are quantified according to site-specific generational branching within vascular trees. The sole user input requirement is a binary (black/white) vascular image. Future applications of VESGEN will include analysis of 3D vascular architecture and bioinformatic dimensions such as blood flow and receptor localization. Branching analysis by VESGEN has demonstrated that numerous regulators including VEGF(165), basic fibroblast growth factor, transforming growth factor beta-1, angiostatin and the clinical steroid triamcinolone acetonide induce 'fingerprint' or 'signature' changes in vascular patterning that provide unique readouts of dominant molecular signaling.


Assuntos
Linfangiogênese/fisiologia , Neovascularização Fisiológica/fisiologia , Software , Interface Usuário-Computador , Animais , Vasos Coronários/fisiologia , Humanos , Camundongos , Codorniz , Retina/efeitos dos fármacos , Vasos Retinianos/fisiologia , Triancinolona Acetonida/farmacologia
2.
Invest Ophthalmol Vis Sci ; 49(3): 1184-90, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18326748

RESUMO

PURPOSE: To quantify the effects of the steroid triamcinolone acetonide (TA) on branching morphology within the angiogenic microvascular tree of the chorioallantoic membrane (CAM) of quail embryos. METHODS: Increasing concentrations of TA (0-16 ng/mL) were applied topically on embryonic day (E) 7 to the chorioallantoic membrane (CAM) of quail embryos cultured in petri dishes and incubated for an additional 24 or 48 hours until fixation. Binary (black/white) microscopic images of arterial end points were quantified by generational analysis of vessel branching (VESGEN) software to obtain major vascular parameters that include vessel diameter (D(v)), fractal dimension (D(f)), tortuosity (T(v)), and densities of vessel area, length, number, and branch point (A(v), L(v), N(v), and Br(v)). For assessment of specific changes in vascular morphology induced by TA, the VESGEN software automatically segmented the vascular tree into branching generations (G(1)... G(10)) according to changes in vessel diameter and branching. RESULTS: Vessel density decreased significantly up to 34% as the function of increasing concentration of TA according to A(v), L(v), Br(v), N(v), and D(f). TA selectively inhibited the growth of new, small vessels because L(v) decreased from 13.14 +/- 0.61 cm/cm(2) for controls to 8.012 +/- 0.82 cm/cm(2) at 16 ng TA/mL in smaller branching generations (G(7)-G(10)) and for N(v) from 473.83 +/- 29.85 cm(-2) to 302.32 +/- 33.09 cm(-2). In contrast, vessel diameter (D(v)) decreased throughout the vascular tree (G(1)-G(10)). CONCLUSIONS: By VESGEN analysis, TA selectively inhibited the angiogenesis of smaller blood vessels, but decreased the vessel diameter of all vessels within the vascular tree.


Assuntos
Inibidores da Angiogênese/farmacologia , Membrana Corioalantoide/efeitos dos fármacos , Embrião não Mamífero/irrigação sanguínea , Neovascularização Fisiológica/efeitos dos fármacos , Triancinolona Acetonida/farmacologia , Animais , Membrana Corioalantoide/irrigação sanguínea , Coturnix/embriologia , Relação Dose-Resposta a Droga , Fractais , Processamento de Imagem Assistida por Computador , Morfogênese , Técnicas de Cultura de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...