Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Hum Reprod ; 24(10): 510-520, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30085186

RESUMO

STUDY QUESTION: Does the shear stress sensing ion channel subunit Piezo1 have an important mechanotransduction role in human fetoplacental endothelium? SUMMARY ANSWER: Piezo1 is present and functionally active in human fetoplacental endothelial cells, and disruption of Piezo1 prevents the normal response to shear stress. WHAT IS KNOWN ALREADY: Shear stress is an important stimulus for maturation and function of placental vasculature but the molecular mechanisms by which the force is detected and transduced are unclear. Piezo1 channels are Ca2+-permeable non-selective cationic channels which are critical for shear stress sensing and maturation of murine embryonic vasculature. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: We investigated the relevance of Piezo1 to placental vasculature by studying human fetoplacental endothelial cells (FpECs) from healthy pregnancies. Endothelial cells were isolated from placental cotyledons and cultured, for the study of tube formation and cell alignment to shear stress. In addition, human placental arterial endothelial cells were isolated and studied immediately by patch-clamp electrophysiology. MAIN RESULTS AND THE ROLE OF CHANCE: The synthetic Piezo1 channel agonist Yoda1 caused strong elevation of the intracellular Ca2+ concentration with a 50% effect occurring at about 5.4 µM. Knockdown of Piezo1 by RNA interference suppressed the Yoda1 response, consistent with it being mediated by Piezo1 channels. Alignment of cells to the direction of shear stress was also suppressed by Piezo1 knockdown without loss of cell viability. Patch-clamp recordings from freshly isolated endothelium showed shear stress-activated single channels which were characteristic of Piezo1. LIMITATIONS, REASONS FOR CAUTION: The in vitro nature of fetoplacental endothelial cell isolation and subsequent culture may affect FpEC characteristics and PIEZO1 expression. In addition to Piezo1, alternative shear stress sensing mechanisms have been suggested in other systems and might also contribute in the placenta. WIDER IMPLICATIONS OF THE FINDINGS: These data suggest that Piezo1 is an important molecular determinant of blood flow sensitivity in the placenta. Establishing and manipulating the molecular mechanisms regulating shear stress sensing could lead to novel therapeutic strategies to improve blood flow in the placenta. LARGE-SCALE DATA: Not applicable. STUDY FUNDING/COMPETING INTEREST(S): LCM was funded by a Clinical Research Training Fellowship from the Medical Research Council and by the Royal College of Obstetricians and Gynaecologists, and has received support from a Wellcome Trust Institutional Strategic Support Fund. JS was supported by the Wellcome Trust and a BHF Intermediate Research Fellowship. HJG, CW, AJH and PJW were supported by PhD Studentships from BHF, BBSRC and the Leeds Teaching Hospitals Charitable Foundation respectively. All authors declare no conflict of interest.


Assuntos
Células Endoteliais/metabolismo , Canais Iônicos/metabolismo , Placenta/citologia , Placenta/metabolismo , Células Cultivadas , Feminino , Humanos , Canais Iônicos/genética , Mecanotransdução Celular/fisiologia , Gravidez , Estresse Mecânico
2.
Curr Top Membr ; 79: 37-57, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28728823

RESUMO

A critical point in mammalian development occurs before mid-embryogenesis when the heart starts to beat, pushing blood into the nascent endothelial lattice. This pushing force is a signal, detected by endothelial cells as a frictional force (shear stress) to trigger cellular changes that underlie the essential processes of vascular remodeling and expansion required for embryonic growth. The processes are complex and multifactorial and Piezo1 became a recognized player only 2years ago, 4years after Piezo1's initial discovery as a functional membrane protein. Piezo1 is now known to be critical in murine embryonic development just at the time when the pushing force is first detected by endothelial cells. Murine Piezo1 gene disruption in endothelial cells is embryonic lethal and mutations in human PIEZO1 associate with severe disease phenotype due to abnormal lymphatic vascular development. Piezo1 proteins coassemble to form calcium-permeable nonselective cationic channels, most likely as trimers. They are large proteins with little if any resemblance to other proteins or ion channel subunits. The channels appear to sense mechanical force directly, including the force imposed on endothelial cells by physiological shear stress. Here, we review current knowledge of Piezo1 in the vascular setting and discuss hypotheses about how it might serve its vascular functions and integrate with other mechanisms. Piezo1 is a new important player for investigators in this field and promises much as a basis for better understanding of vascular physiology and pathophysiology and perhaps also discovery of new therapies.


Assuntos
Vasos Sanguíneos/citologia , Vasos Sanguíneos/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular , Estresse Mecânico , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...