Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 535
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38874454

RESUMO

A basic assumption underlying induced pluripotent stem cell (iPSC) models of neurodegeneration is that disease-relevant pathologies present in brain tissue are also represented in donor-matched cells differentiated from iPSCs. However, few studies have tested this hypothesis in matched iPSCs and neuropathologically characterized donated brain tissues. To address this, we assessed iPSC-neuron production of ß-amyloid (Aß) Aß40, Aß42, and Aß43 in 24 iPSC lines matched to donor brains with primary neuropathologic diagnoses of sporadic AD (sAD), familial AD (fAD), control, and other neurodegenerative disorders. Our results demonstrate a positive correlation between Aß43 production by fAD iPSC-neurons and Aß43 accumulation in matched brain tissues but do not reveal a substantial correlation in soluble Aß species between control or sAD iPSC-neurons and matched brains. However, we found that the ApoE4 genotype is associated with increased Aß production by AD iPSC-neurons. Pathologic tau phosphorylation was found to be increased in AD and fAD iPSC-neurons compared to controls and positively correlated with the relative abundance of longer-length Aß species produced by these cells. Taken together, our results demonstrate that sAD-predisposing genetic factors influence iPSC-neuron phenotypes and that these cells are capturing disease-relevant and patient-specific components of the amyloid cascade.

2.
Nat Rev Neurol ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906999

RESUMO

For the past three decades, apolipoprotein E (APOE) has been known as the single greatest genetic modulator of sporadic Alzheimer disease (AD) risk, influencing both the average age of onset and the lifetime risk of developing AD. The APOEε4 allele significantly increases AD risk, whereas the ε2 allele is protective relative to the most common ε3 allele. However, large differences in effect size exist across ethnoracial groups that are likely to depend on both global genetic ancestry and local genetic ancestry, as well as gene-environment interactions. Although early studies linked APOE to amyloid-ß - one of the two culprit aggregation-prone proteins that define AD - in the past decade, mounting work has associated APOE with other neurodegenerative proteinopathies and broader ageing-related brain changes, such as neuroinflammation, energy metabolism failure, loss of myelin integrity and increased blood-brain barrier permeability, with potential implications for longevity and resilience to pathological protein aggregates. Novel mouse models and other technological advances have also enabled a number of therapeutic approaches aimed at either attenuating the APOEε4-linked increased AD risk or enhancing the APOEε2-linked AD protection. This Review summarizes this progress and highlights areas for future research towards the development of APOE-directed therapeutics.

3.
Acta Neuropathol ; 147(1): 101, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884806

RESUMO

Insoluble pathogenic proteins accumulate along blood vessels in conditions of cerebral amyloid angiopathy (CAA), exerting a toxic effect on vascular cells and impacting cerebral homeostasis. In this work, we provide new evidence from three-dimensional human brain histology that tau protein, the main component of neurofibrillary tangles, can similarly accumulate along brain vascular segments. We quantitatively assessed n = 6 Alzheimer's disease (AD), and n = 6 normal aging control brains and saw that tau-positive blood vessel segments were present in all AD cases. Tau-positive vessels are enriched for tau at levels higher than the surrounding tissue and appear to affect arterioles across cortical layers (I-V). Further, vessels isolated from these AD tissues were enriched for N-terminal tau and tau phosphorylated at T181 and T217. Importantly, tau-positive vessels are associated with local areas of increased tau neurofibrillary tangles. This suggests that accumulation of tau around blood vessels may reflect a local clearance failure. In sum, these data indicate that tau, like amyloid beta, accumulates along blood vessels and may exert a significant influence on vasculature in the setting of AD.


Assuntos
Doença de Alzheimer , Encéfalo , Emaranhados Neurofibrilares , Proteínas tau , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Emaranhados Neurofibrilares/patologia , Emaranhados Neurofibrilares/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Feminino , Masculino , Idoso , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Fosforilação
4.
Elife ; 122024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896568

RESUMO

We present open-source tools for three-dimensional (3D) analysis of photographs of dissected slices of human brains, which are routinely acquired in brain banks but seldom used for quantitative analysis. Our tools can: (1) 3D reconstruct a volume from the photographs and, optionally, a surface scan; and (2) produce a high-resolution 3D segmentation into 11 brain regions per hemisphere (22 in total), independently of the slice thickness. Our tools can be used as a substitute for ex vivo magnetic resonance imaging (MRI), which requires access to an MRI scanner, ex vivo scanning expertise, and considerable financial resources. We tested our tools on synthetic and real data from two NIH Alzheimer's Disease Research Centers. The results show that our methodology yields accurate 3D reconstructions, segmentations, and volumetric measurements that are highly correlated to those from MRI. Our method also detects expected differences between post mortem confirmed Alzheimer's disease cases and controls. The tools are available in our widespread neuroimaging suite 'FreeSurfer' (https://surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools).


Every year, thousands of human brains are donated to science. These brains are used to study normal aging, as well as neurological diseases like Alzheimer's or Parkinson's. Donated brains usually go to 'brain banks', institutions where the brains are dissected to extract tissues relevant to different diseases. During this process, it is routine to take photographs of brain slices for archiving purposes. Often, studies of dead brains rely on qualitative observations, such as 'the hippocampus displays some atrophy', rather than concrete 'numerical' measurements. This is because the gold standard to take three-dimensional measurements of the brain is magnetic resonance imaging (MRI), which is an expensive technique that requires high expertise ­ especially with dead brains. The lack of quantitative data means it is not always straightforward to study certain conditions. To bridge this gap, Gazula et al. have developed an openly available software that can build three-dimensional reconstructions of dead brains based on photographs of brain slices. The software can also use machine learning methods to automatically extract different brain regions from the three-dimensional reconstructions and measure their size. These data can be used to take precise quantitative measurements that can be used to better describe how different conditions lead to changes in the brain, such as atrophy (reduced volume of one or more brain regions). The researchers assessed the accuracy of the method in two ways. First, they digitally sliced MRI-scanned brains and used the software to compute the sizes of different structures based on these synthetic data, comparing the results to the known sizes. Second, they used brains for which both MRI data and dissection photographs existed and compared the measurements taken by the software to the measurements obtained with MRI images. Gazula et al. show that, as long as the photographs satisfy some basic conditions, they can provide good estimates of the sizes of many brain structures. The tools developed by Gazula et al. are publicly available as part of FreeSurfer, a widespread neuroimaging software that can be used by any researcher working at a brain bank. This will allow brain banks to obtain accurate measurements of dead brains, allowing them to cheaply perform quantitative studies of brain structures, which could lead to new findings relating to neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Encéfalo , Imageamento Tridimensional , Aprendizado de Máquina , Humanos , Imageamento Tridimensional/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Fotografação/métodos , Dissecação , Imageamento por Ressonância Magnética/métodos , Neuropatologia/métodos , Neuroimagem/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38917443

RESUMO

Proteins exhibiting prion-like properties are implicated in tauopathies. The prion-like traits of tau influence disease progression and correlate with severity. Techniques to measure tau bioactivity such as RT-QuIC and biosensor cells lack spatial specificity. Therefore, we developed a histological probe aimed at detecting and localizing bioactive tau in situ. We first induced the recruitment of a tagged probe by bioactive Tau in human brain tissue slices using biosensor cell lysates containing a fluorescent probe. We then enhanced sensitivity and flexibility by designing a recombinant probe with a myc tag. The probe design aimed to replicate the recruitment process seen in prion-like mechanisms based on the cryo-EM structure of tau aggregates in Alzheimer disease (AD). Using this novel probe, we observed selective staining of misfolded tau in pre- and post-synaptic structures within neurofibrillary tangles and neurites, whether or not associated with neuritic plaques. The probe specifically targeted AD-associated bioactive tau and did not recognize bioactive tau from other neurodegenerative diseases. Electron microscopy and immunolabeling further confirmed the identification of fibrillar and non-fibrillar tau. Finally, we established a correlation between quantifying bioactive tau using this technique and gold standard biosensor cells. This technique presents a robust approach for detecting bioactive tau in AD tissues and has potential applications for deciphering mechanisms of tau propagation and degradation pathways.

6.
Acta Neuropathol ; 147(1): 65, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557897

RESUMO

Human microglia are critically involved in Alzheimer's disease (AD) progression, as shown by genetic and molecular studies. However, their role in tau pathology progression in human brain has not been well described. Here, we characterized 32 human donors along progression of AD pathology, both in time-from early to late pathology-and in space-from entorhinal cortex (EC), inferior temporal gyrus (ITG), prefrontal cortex (PFC) to visual cortex (V2 and V1)-with biochemistry, immunohistochemistry, and single nuclei-RNA-sequencing, profiling a total of 337,512 brain myeloid cells, including microglia. While the majority of microglia are similar across brain regions, we identified a specific subset unique to EC which may contribute to the early tau pathology present in this region. We calculated conversion of microglia subtypes to diseased states and compared conversion patterns to those from AD animal models. Targeting genes implicated in this conversion, or their upstream/downstream pathways, could halt gene programs initiated by early tau progression. We used expression patterns of early tau progression to identify genes whose expression is reversed along spreading of spatial tau pathology (EC > ITG > PFC > V2 > V1) and identified their potential involvement in microglia subtype conversion to a diseased state. This study provides a data resource that builds on our knowledge of myeloid cell contribution to AD by defining the heterogeneity of microglia and brain macrophages during both temporal and regional pathology aspects of AD progression at an unprecedented resolution.


Assuntos
Doença de Alzheimer , Animais , Humanos , Doença de Alzheimer/patologia , Proteínas tau/genética , Proteínas tau/metabolismo , Transcriptoma , Encéfalo/patologia , Células Mieloides/patologia , Microglia/patologia , Peptídeos beta-Amiloides/metabolismo
7.
Acta Neuropathol ; 147(1): 66, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568475

RESUMO

Reactive astrogliosis accompanies the two neuropathological hallmarks of Alzheimer's disease (AD)-Aß plaques and neurofibrillary tangles-and parallels neurodegeneration in AD and AD-related dementias (ADRD). Thus, there is growing interest in developing imaging and fluid biomarkers of reactive astrogliosis for AD/ADRD diagnosis and prognostication. Monoamine oxidase-B (MAO-B) is emerging as a target for PET imaging radiotracers of reactive astrogliosis. However, a thorough characterization of MAO-B expression in postmortem control and AD/ADRD brains is lacking. We sought to: (1) identify the primary cell type(s) expressing MAO-B in control and AD brains; (2) quantify MAO-B immunoreactivity in multiple brain regions of control and AD donors as a proxy for PET radiotracer uptake; (3) correlate MAO-B level with local AD neuropathological changes, reactive glia, and cortical atrophy; (4) determine whether the MAOB rs1799836 SNP genotype impacts MAO-B expression level; (5) compare MAO-B immunoreactivity across AD/ADRD, including Lewy body diseases (LBD) and frontotemporal lobar degenerations with tau (FTLD-Tau) and TDP-43 (FTLD-TDP). We found that MAO-B is mainly expressed by subpial and perivascular cortical astrocytes as well as by fibrous white matter astrocytes in control brains, whereas in AD brains, MAO-B is significantly upregulated by both cortical reactive astrocytes and white matter astrocytes across temporal, frontal, and occipital lobes. By contrast, MAO-B expression level was unchanged and lowest in cerebellum. Cortical MAO-B expression was independently associated with cortical atrophy and local measures of reactive astrocytes and microglia, and significantly increased in reactive astrocytes surrounding Thioflavin-S+ dense-core Aß plaques. MAO-B expression was not affected by the MAOB rs1799836 SNP genotype. MAO-B expression was also significantly increased in the frontal cortex and white matter of donors with corticobasal degeneration, Pick's disease, and FTLD-TDP, but not in LBD or progressive supranuclear palsy. These findings support ongoing efforts to develop MAO-B-based PET radiotracers to image reactive astrogliosis in AD/ADRD.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doença por Corpos de Lewy , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Gliose , Biomarcadores , Atrofia
8.
J Biol Chem ; 300(6): 107313, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657864

RESUMO

Sortilin-related receptor 1 (SORL1) is an intracellular sorting receptor genetically implicated in Alzheimer's disease (AD) that impacts amyloid precursor protein trafficking. The objective of these studies was to test the hypothesis that SORL1 binds tau, modulates its cellular trafficking and impacts the aggregation of cytoplasmic tau induced by pathological forms of tau. Using surface plasmon resonance measurements, we observed high-affinity binding of tau to SORL1 and the vacuolar protein sorting 10 domain of SORL1. Interestingly, unlike LDL receptor-related protein 1, SORL1 binds tau at both pH 7.4 and pH 5.5, revealing its ability to bind tau at endosomal pH. Immunofluorescence studies confirmed that exogenously added tau colocalized with SORL1 in H4 neuroglioma cells, while overexpression of SORL1 in LDL receptor-related protein 1-deficient Chinese hamster ovary (CHO) cells resulted in a marked increase in the internalization of tau, indicating that SORL1 can bind and mediate the internalization of monomeric forms of tau. We further demonstrated that SORL1 mediates tau seeding when tau RD P301S FRET biosensor cells expressing SORL1 were incubated with high molecular weight forms of tau isolated from the brains of patients with AD. Seeding in H4 neuroglioma cells is significantly reduced when SORL1 is knocked down with siRNA. Finally, we demonstrate that the N1358S mutant of SORL1 significantly increases tau seeding when compared to WT SORL1, identifying for the first time a potential mechanism that connects this specific SORL1 mutation to Alzheimer's disease. Together, these studies identify SORL1 as a receptor that contributes to trafficking and seeding of pathogenic tau.


Assuntos
Cricetulus , Proteínas Relacionadas a Receptor de LDL , Proteínas de Membrana Transportadoras , Proteínas tau , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Animais , Células CHO , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Linhagem Celular Tumoral , Ligação Proteica , Transporte Proteico
9.
Acta Neuropathol ; 147(1): 56, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478117

RESUMO

The stimulator of interferon genes (STING) pathway has been implicated in neurodegenerative diseases, including Parkinson's disease and amyotrophic lateral sclerosis (ALS). While prior studies have focused on STING within immune cells, little is known about STING within neurons. Here, we document neuronal activation of the STING pathway in human postmortem cortical and spinal motor neurons from individuals affected by familial or sporadic ALS. This process takes place selectively in the most vulnerable cortical and spinal motor neurons but not in neurons that are less affected by the disease. Concordant STING activation in layer V cortical motor neurons occurs in a mouse model of C9orf72 repeat-associated ALS and frontotemporal dementia (FTD). To establish that STING activation occurs in a neuron-autonomous manner, we demonstrate the integrity of the STING signaling pathway, including both upstream activators and downstream innate immune response effectors, in dissociated mouse cortical neurons and neurons derived from control human induced pluripotent stem cells (iPSCs). Human iPSC-derived neurons harboring different familial ALS-causing mutations exhibit increased STING signaling with DNA damage as a main driver. The elevated downstream inflammatory markers present in ALS iPSC-derived neurons can be suppressed with a STING inhibitor. Our results reveal an immunophenotype that consists of innate immune signaling driven by the STING pathway and occurs specifically within vulnerable neurons in ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Doença de Pick , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo
10.
Curr Opin Neurobiol ; 86: 102857, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489865

RESUMO

The concept of 'prion-like' behavior has emerged in the study of diseases involving protein misfolding where fibrillar structures, called amyloids, self-propagate and induce disease in a fashion similar to prions. From a biological standpoint, in order to be considered 'prion-like,' a protein must traverse cells and tissues and further propagate via a templated conformational change. Since 2017, cryo-electron microscopy structures from patient-derived 'prion-like' amyloids, in particular tau, have been presented and revealed structural similarities shared across amyloids. Since 2021, cryo-EM structures from prions of known infectivity have been added to the ex vivo amyloid structure family. In this review, we discuss current proposals for the 'prion-like' mechanisms of spread for tau and prion protein as well as discuss different influencers on structures of aggregates from tauopathies and prion diseases. Lastly, we discuss some of the current hypotheses for what may distinguish structures that are 'prion-like' from transmissible prion structures.


Assuntos
Proteínas Priônicas , Proteínas tau , Humanos , Proteínas tau/metabolismo , Proteínas tau/química , Animais , Proteínas Priônicas/metabolismo , Proteínas Priônicas/química , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Tauopatias/metabolismo , Tauopatias/patologia , Príons/metabolismo , Príons/química , Amiloide/metabolismo , Amiloide/química
11.
Mol Ther ; 32(5): 1373-1386, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38504517

RESUMO

Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do, they have a later age of onset, milder clinical course, and less severe neuropathological findings than people without this allele. The contrast is especially stark when compared with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, a more aggressive clinical course and more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Here, we demonstrate that brain exposure to APOE ε2 via a gene therapy approach, which bathes the entire cortical mantle in the gene product after transduction of the ependyma, reduces Aß plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE ε4. This result suggests a promising protective effect of exogenous APOE ε2 and reveals a cell nonautonomous effect of the protein on microglial activation, which we show is similar to plaque-associated microglia in the brain of Alzheimer disease patients who inherit APOE ε2. These data increase the potential that an APOE ε2 therapeutic could be effective in Alzheimer disease, even in individuals born with the risky ε4 allele.


Assuntos
Doença de Alzheimer , Apolipoproteína E2 , Modelos Animais de Doenças , Terapia Genética , Camundongos Transgênicos , Microglia , Placa Amiloide , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/etiologia , Camundongos , Terapia Genética/métodos , Humanos , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Microglia/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/terapia , Doenças Neuroinflamatórias/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores
12.
J Alzheimers Dis ; 99(s2): S397-S407, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306039

RESUMO

Background: Recent Alzheimer's disease (AD) discoveries are increasingly based on studies from a variety of omics technologies on large cohorts. Currently, there is no easily accessible resource for neuroscientists to browse, query, and visualize these complex datasets in a harmonized manner. Objective: Create an online portal of public omics datasets for AD research. Methods: We developed Alzheimer DataLENS, a web-based portal, using the R Shiny platform to query and visualize publicly available transcriptomics and genetics studies of AD on human cohorts. To ensure consistent representation of AD findings, all datasets were processed through a uniform bioinformatics pipeline. Results: Alzheimer DataLENS currently houses 2 single-nucleus RNA sequencing datasets, over 30 bulk RNA sequencing datasets from 19 brain regions and 3 cohorts, and 2 genome-wide association studies (GWAS). Available visualizations for single-nucleus data include bubble plots, heatmaps, and UMAP plots; for bulk expression data include box plots and heatmaps; for pathways include protein-protein interaction network plots; and for GWAS results include Manhattan plots. Alzheimer DataLENS also links to two other knowledge resources: the AD Progression Atlas and the Astrocyte Atlas. Conclusions: Alzheimer DataLENS is a valuable resource for investigators to quickly and systematically explore omics datasets and is freely accessible at https://alzdatalens.partners.org.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Humanos , Estudo de Associação Genômica Ampla , Biologia Computacional/métodos , Encéfalo/metabolismo , Encéfalo/patologia , Internet
13.
bioRxiv ; 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38328111

RESUMO

Insoluble pathogenic proteins accumulate along blood vessels in conditions of cerebral amyloid angiopathy (CAA), exerting a toxic effect on vascular cells and impacting cerebral homeostasis. In this work we provide new evidence from three-dimensional human brain histology that tau protein, the main component of neurofibrillary tangles, can similarly accumulate along brain vascular segments. We quantitatively assessed n=6 Alzheimer's disease (AD), and n=6 normal aging control brains and saw that tau-positive blood vessel segments were present in all AD cases. Tau-positive vessels are enriched for tau at levels higher than the surrounding tissue and appear to affect arterioles across cortical layers (I-V). Further, vessels isolated from these AD tissues were enriched for N-terminal tau and tau phosphorylated at T181 and T217. Importantly, tau-positive vessels are associated with local areas of increased tau neurofibrillary tangles. This suggests that accumulation of tau around blood vessels may reflect a local clearance failure. In sum, these data indicate tau, like amyloid beta, accumulates along blood vessels and may exert a significant influence on vasculature in the setting of AD.

14.
Alzheimers Dement ; 20(3): 2298-2308, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265159

RESUMO

Despite its high prevalence among dementias, Lewy body dementia (LBD) remains poorly understood with a limited, albeit growing, evidence base. The public-health burden that LBD imposes is worsened by overlapping pathologies, which contribute to misdiagnosis, and lack of treatments. For this report, we gathered and analyzed public-domain information on advocacy, funding, research outputs, and the therapeutic pipeline to identify gaps in each of these key elements. To further understand the current gaps, we also conducted interviews with leading experts in regulatory/governmental agencies, LBD advocacy, academic research, and biopharmaceutical research, as well as with funding sources. We identified wide gaps across the entire landscape, the most critical being in research. Many of the experts participated in a workshop to discuss the prioritization of research areas with a view to accelerating therapeutic development and improving patient care. This white paper outlines the opportunities for bridging the major LBD gaps and creates the framework for collaboration in that endeavor. HIGHLIGHTS: A group representing academia, government, industry, and consulting expertise was convened to discuss current progress in Dementia with Lewy Body care and research. Consideration of expert opinion,natural language processing of the literature as well as publicly available data bases, and Delphi inspired discussion led to a proposed consensus document of priorities for the field.


Assuntos
Doença por Corpos de Lewy , Humanos , Doença por Corpos de Lewy/diagnóstico , Doença por Corpos de Lewy/terapia
15.
Acta Neuropathol ; 147(1): 9, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175301

RESUMO

Nuclear clearance and cytoplasmic accumulations of the RNA-binding protein TDP-43 are pathological hallmarks in almost all patients with amyotrophic lateral sclerosis (ALS) and up to 50% of patients with frontotemporal dementia (FTD) and Alzheimer's disease. In Alzheimer's disease, TDP-43 pathology is predominantly observed in the limbic system and correlates with cognitive decline and reduced hippocampal volume. Disruption of nuclear TDP-43 function leads to abnormal RNA splicing and incorporation of erroneous cryptic exons in numerous transcripts including Stathmin-2 (STMN2, also known as SCG10) and UNC13A, recently reported in tissues from patients with ALS and FTD. Here, we identify both STMN2 and UNC13A cryptic exons in Alzheimer's disease patients, that correlate with TDP-43 pathology burden, but not with amyloid-ß or tau deposits. We also demonstrate that processing of the STMN2 pre-mRNA is more sensitive to TDP-43 loss of function than UNC13A. In addition, full-length RNAs encoding STMN2 and UNC13A are suppressed in large RNA-seq datasets generated from Alzheimer's disease post-mortem brain tissue. Collectively, these results open exciting new avenues to use STMN2 and UNC13A as potential therapeutic targets in a broad range of neurodegenerative conditions with TDP-43 proteinopathy including Alzheimer's disease.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doença de Pick , Humanos , Doença de Alzheimer/genética , Proteínas de Ligação a DNA/genética , Splicing de RNA , RNA Mensageiro/genética , Estatmina/genética
16.
Brain ; 147(2): 637-648, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236720

RESUMO

Aggregation prone molecules, such as tau, form both historically well characterized fibrillar deposits (neurofibrillary tangles) and recently identified phosphate-buffered saline (PBS) extract species called proteopathic seeds. Both can cause normal endogenous tau to undergo templated misfolding. The relationship of these seeds to the fibrils that define tau-related diseases is unknown. We characterized the aqueous extractable and sarkosyl insoluble fibrillar tau species derived from human Alzheimer brain using mass spectrometry and in vitro bioassays. Post-translational modifications (PTMs) including phosphorylation, acetylation and ubiquitination are identified in both preparations. PBS extract seed competent tau can be distinguished from sarkosyl insoluble tau by the presence of overlapping, but less abundant, PTMs and an absence of some PTMs unique to the latter. The presence of ubiquitin and other PTMs on the PBS-extracted tau species correlates with the amount of tau in the seed competent size exclusion fractions, with the bioactivity and with the aggressiveness of clinical disease. These results demonstrate that the PTMs present on bioactive, seed competent PBS extract tau species are closely related to, but distinct from, the PTMs of mature paired helical filaments, consistent with the idea that they are a forme fruste of tau species that ultimately form fibrils.


Assuntos
Doença de Alzheimer , Emaranhados Neurofibrilares , Humanos , Emaranhados Neurofibrilares/metabolismo , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Processamento de Proteína Pós-Traducional , Fosforilação
17.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38275188

RESUMO

Clinical improvement following neurosurgical cerebrospinal fluid shunting for presumed idiopathic normal pressure hydrocephalus is variable. Idiopathic normal pressure hydrocephalus patients may have undetected Alzheimer's disease-related cortical pathology that confounds diagnosis and clinical outcomes. In this study, we sought to determine the utility of cortical tissue immuno-analysis in predicting shunting outcomes in idiopathic normal pressure hydrocephalus patients. We performed a pooled analysis using a systematic review as well as analysis of a new, original patient cohort. Of the 2707 screened studies, 3 studies with a total of 229 idiopathic normal pressure hydrocephalus patients were selected for inclusion in this meta-analysis alongside our original cohort. Pooled statistics of shunting outcomes for the 229 idiopathic normal pressure hydrocephalus patients and our new cohort of 36 idiopathic normal pressure hydrocephalus patients revealed that patients with Aß + pathology were significantly more likely to exhibit shunt nonresponsiveness than patients with negative pathology. Idiopathic normal pressure hydrocephalus patients with Alzheimer's disease -related cortical pathology may be at a higher risk of treatment facing unfavorable outcomes following cerebrospinal fluid shunting. Thus, cortical tissue analysis from living patients may be a useful diagnostic and prognostic adjunct for patients with presumed idiopathic normal pressure hydrocephalus and potentially other neurodegenerative conditions affecting the cerebral cortex.


Assuntos
Doença de Alzheimer , Hidrocefalia de Pressão Normal , Humanos , Hidrocefalia de Pressão Normal/cirurgia , Hidrocefalia de Pressão Normal/patologia , Córtex Cerebral/patologia
18.
Ann Neurol ; 95(4): 625-634, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38180638

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder and one of the leading causes of disability worldwide. The apolipoprotein E4 gene (APOE4) is the strongest genetic risk factor for AD. In 2023, the APOE4 National Institute on Aging/Alzheimer's Disease Sequencing Project working group came together to gather data and discuss the question of whether to reduce or increase APOE4 as a therapeutic intervention for AD. It was the unanimous consensus that cumulative data from multiple studies in humans and animal models support that lowering APOE4 should be a target for therapeutic approaches for APOE4 carriers. ANN NEUROL 2024;95:625-634.


Assuntos
Doença de Alzheimer , Animais , Estados Unidos , Humanos , Doença de Alzheimer/terapia , Doença de Alzheimer/tratamento farmacológico , Apolipoproteína E4/genética , Objetivos , National Institute on Aging (U.S.)
19.
Alzheimers Dement ; 20(1): 74-90, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37461318

RESUMO

INTRODUCTION: Omics studies have revealed that various brain cell types undergo profound molecular changes in Alzheimer's disease (AD) but the spatial relationships with plaques and tangles and APOE-linked differences remain unclear. METHODS: We performed laser capture microdissection of amyloid beta (Aß) plaques, the 50 µm halo around them, tangles with the 50 µm halo around them, and areas distant (> 50 µm) from plaques and tangles in the temporal cortex of AD and control donors, followed by RNA-sequencing. RESULTS: Aß plaques exhibited upregulated microglial (neuroinflammation/phagocytosis) and downregulated neuronal (neurotransmission/energy metabolism) genes, whereas tangles had mostly downregulated neuronal genes. Aß plaques had more differentially expressed genes than tangles. We identified a gradient Aß plaque > peri-plaque > tangle > distant for these changes. AD APOE ε4 homozygotes had greater changes than APOE ε3 across locations, especially within Aß plaques. DISCUSSION: Transcriptomic changes in AD consist primarily of neuroinflammation and neuronal dysfunction, are spatially associated mainly with Aß plaques, and are exacerbated by the APOE ε4 allele.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Emaranhados Neurofibrilares , Apolipoproteína E4/genética , Doenças Neuroinflamatórias , Encéfalo/metabolismo , Transcriptoma , Placa Amiloide/metabolismo , Perfilação da Expressão Gênica
20.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37333251

RESUMO

We present open-source tools for 3D analysis of photographs of dissected slices of human brains, which are routinely acquired in brain banks but seldom used for quantitative analysis. Our tools can: (i) 3D reconstruct a volume from the photographs and, optionally, a surface scan; and (ii) produce a high-resolution 3D segmentation into 11 brain regions per hemisphere (22 in total), independently of the slice thickness. Our tools can be used as a substitute for ex vivo magnetic resonance imaging (MRI), which requires access to an MRI scanner, ex vivo scanning expertise, and considerable financial resources. We tested our tools on synthetic and real data from two NIH Alzheimer's Disease Research Centers. The results show that our methodology yields accurate 3D reconstructions, segmentations, and volumetric measurements that are highly correlated to those from MRI. Our method also detects expected differences between post mortem confirmed Alzheimer's disease cases and controls. The tools are available in our widespread neuroimaging suite "FreeSurfer" ( https://surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools ).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...