Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Phys Imaging Radiat Oncol ; 30: 100590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38827886

RESUMO

Background and purpose: For locally advanced non-small cell lung cancer (LA-NSCLC), intensity-modulated proton therapy (IMPT) can reduce organ at risk (OAR) doses compared to intensity-modulated radiotherapy (IMRT). Deep inspiration breath hold (DIBH) reduces OAR doses compared to free breathing (FB) in IMRT. In IMPT, differences in dose distributions and robustness between DIBH and FB are unclear. In this study, we compare DIBH to FB in IMPT, and IMPT to IMRT. Materials and methods: Fortyone LA-NSCLC patients were prospectively included. 4D computed tomography images (4DCTs) and DIBH CTs were acquired for treatment planning and during weeks 1 and 3 of treatment. A new system for automated robust planning was developed and used to generate a FB and a DIBH IMPT plan for each patient. Plans were compared in terms of dose-volume parameters and normal tissue complication probabilities (NTCPs). Dose recalculations on repeat CTs were used to compare inter-fraction plan robustness. Results: In IMPT, DIBH reduced median lungs Dmean from 9.3 Gy(RBE) to 8.0 Gy(RBE) compared to FB, and radiation pneumonitis NTCP from 10.9 % to 9.4 % (p < 0.001). Inter-fraction plan robustness for DIBH and FB was similar. Median NTCPs for radiation pneumonitis and mortality were around 9 percentage points lower with IMPT than IMRT (p < 0.001). These differences were much larger than between FB and DIBH within each modality. Conclusion: DIBH IMPT resulted in reduced lung dose and radiation pneumonitis NTCP compared to FB IMPT. Inter-fraction robustness was comparable. OAR doses were far lower in IMPT than IMRT.

2.
Sci Rep ; 13(1): 6709, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185591

RESUMO

Particle therapy (PT) used for cancer treatment can spare healthy tissue and reduce treatment toxicity. However, full exploitation of the dosimetric advantages of PT is not yet possible due to range uncertainties, warranting development of range-monitoring techniques. This study proposes a novel range-monitoring technique introducing the yet unexplored concept of simultaneous detection and imaging of fast neutrons and prompt-gamma rays produced in beam-tissue interactions. A quasi-monolithic organic detector array is proposed, and its feasibility for detecting range shifts in the context of proton therapy is explored through Monte Carlo simulations of realistic patient models and detector resolution effects. The results indicate that range shifts of [Formula: see text] can be detected at relatively low proton intensities ([Formula: see text] protons/spot) when spatial information obtained through imaging of both particle species are used simultaneously. This study lays the foundation for multi-particle detection and imaging systems in the context of range verification in PT.


Assuntos
Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Diagnóstico por Imagem , Prótons , Raios gama , Dosagem Radioterapêutica , Método de Monte Carlo , Imagens de Fantasmas
3.
Int J Radiat Oncol Biol Phys ; 106(3): 630-638, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759076

RESUMO

PURPOSE: Intensity modulated proton therapy (IMPT) of locally advanced prostate cancer can spare the bowel considerably compared with modern photon therapy, but simultaneous treatment of the prostate (p), seminal vesicles (sv), and lymph nodes is challenging owing to day-to-day organ motion and range uncertainties. Our purpose was, therefore, to generate a plan library for use in adaptive IMPT to mitigate these uncertainties. METHODS AND MATERIALS: We retrospectively included 27 patients with a series of computed tomography scans throughout their treatment representing day-to-day variation. In 18 of the patients, target motion was analyzed using rigid shifts of prostate gold markers relative to bony anatomy. A plan library with different p and sv planning target volume (p/sv-PTV) positions was defined from the distribution and direction of these shifts. Delivery of IMPT using plan selection from the library was simulated for image guidance on bony anatomy, in the remaining patients and compared with nonadaptive IMPT. RESULTS: The plan library consisted of 3 small margin p/sv-PTVs: (1) p/sv-PTV shifted 1.5 systematic error (Σ) of the population mean in the anterior and cranial directions, (2) p/sv-PTV shifted 1.5Σ in the posterior and caudal directions, and (3) p/sv-PTV in the planning position. The conventional p/sv-PTV was also available for backup. Plan selection compared with nonadaptive IMPT resulted in a reduction of the rectum volume receiving 60 Gy relative biological effect (RBE) (V60GyRBE) from on average 12 mL to 9 mL. For the bladder the average V45GyRBE was reduced from 36% to 30%. Large and small bowel doses were also reduced, whereas target coverage was comparable or improved compared with nonadaptive IMPT. CONCLUSIONS: Plan selection based on a population model of rigid target motion was feasible for all patients. Compared with conventional IMPT, plan selection resulted in significant dosimetric sparing of rectum and bladder without compromising target coverage.


Assuntos
Movimentos dos Órgãos , Neoplasias da Próstata/radioterapia , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada/métodos , Pontos de Referência Anatômicos/diagnóstico por imagem , Marcadores Fiduciais , Ouro , Humanos , Bibliotecas Digitais , Linfonodos/diagnóstico por imagem , Irradiação Linfática/métodos , Masculino , Tratamentos com Preservação do Órgão/métodos , Órgãos em Risco/diagnóstico por imagem , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Reto/diagnóstico por imagem , Estudos Retrospectivos , Glândulas Seminais/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Incerteza , Bexiga Urinária/diagnóstico por imagem
4.
Radiother Oncol ; 128(2): 327-335, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29941300

RESUMO

BACKGROUND AND PURPOSE: Planned doses are used as surrogate for the actually delivered dose in radiotherapy. We have estimated the delivered dose in a dose-escalation trial of locally advanced prostate cancer by statistical dose-accumulation and by DVH-summation, and compared to planned dose. MATERIALS AND METHOD: Prescribed dose-escalation to the prostate was 67.5 Gy/25fr., corresponding to 81GyEQD2 assuming α/ß = 1.5. The 21 patients had three targets (i.e. CTV67.5 + 2 mm, CTV60 + 5 mm, CTV50 + 10 mm) irradiated by a simultaneous-integrated-boost technique. Analysis was based on 213 CT scans and 5-years of follow-up. For statistical dose-accumulation, we modelled 10000 possible treatment courses based on planned dose and deformation-vector-fields from contour-based registration. For DVH-summation we recalculated dose on repeat-CTs and estimated median D98%/EUD. Groups with/without disease recurrence were compared. RESULTS: Discrepancies between planned and accumulated dose were mostly seen for CTV67.5, where under-dosage was found at different locations in the prostate in 12/21 patients. Delivered dose-escalation (D98%) was on average 73.9GyEQD2 (range: 68.3-78.7GyEQD2). No significant difference in accumulated-D98% was found in patients with (n = 8) and without (n = 13) recurrence (p > 0.05). Average D98%/EUD with statistical dose-accumulation vs DVH-summation was significantly different in CTV60, CTV50, rectum and bladder but not in CTV67.5. CONCLUSION: The planned dose escalation was not received by more than half-of-the patients. Robustness of the prostate target (CTV67.5) should therefore be better prioritized in these patients given the low toxicity profile. Estimates of delivered dose were less conservative for dose-accumulation due to interaction of random organ motion with the dose matrix.


Assuntos
Recidiva Local de Neoplasia/radioterapia , Neoplasias da Próstata/radioterapia , Idoso , Relação Dose-Resposta à Radiação , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Movimento , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada/métodos , Reto/efeitos da radiação , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Bexiga Urinária/efeitos da radiação
5.
Radiother Oncol ; 120(2): 300-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27424291

RESUMO

BACKGROUND AND PURPOSE: Radiation-induced cancer is a serious late effect that may follow radiotherapy. A considerable uncertainty is associated with carcinogenesis from photon-based treatment, and even less established when including relative biological effectiveness (RBE) for particle therapy. The aim of this work was therefore to estimate and in particular explore relative risks (RR) of secondary cancer (SC) following particle therapy as applied in treatment of prostate cancer. MATERIAL AND METHODS: RRs of radiation-induced SC in the bladder and rectum were estimated using a bell-shaped dose-response model incorporating RBE and fractionation effects. The risks from volumetric modulated arc therapy (VMAT) were compared to intensity-modulated proton therapy (IMPT) and scanning carbon ions for ten patients. RESULTS: The mean estimated RR (95% CI) of SC for VMAT/C-ion was 1.31 (0.65-2.18) for the bladder and 0.58 (0.41-0.80) for the rectum. Corresponding values for VMAT/IMPT were 1.72 (1.06-2.37) and 1.10 (0.78-1.43). The radio-sensitivity parameter α had the strongest influence on the results with decreasing RR for increasing values of α. CONCLUSION: Based on the wide spread in RR between patients and variations across the included parameter values, the risk profiles of the rectum and bladder were not dramatically different for the investigated radiotherapy techniques.


Assuntos
Modelos Biológicos , Neoplasias Induzidas por Radiação/etiologia , Segunda Neoplasia Primária/etiologia , Neoplasias da Próstata/radioterapia , Neoplasias Retais/etiologia , Neoplasias da Bexiga Urinária/etiologia , Fracionamento da Dose de Radiação , Humanos , Masculino , Órgãos em Risco/efeitos da radiação , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Reto/efeitos da radiação , Risco , Bexiga Urinária/efeitos da radiação
6.
Acta Oncol ; 55(8): 943-58, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27055486

RESUMO

UNLABELLED: Introdution: Variation in shape, position and treatment response of both tumor and organs at risk are major challenges for accurate dose delivery in radiotherapy. Adaptive radiotherapy (ART) has been proposed to customize the treatment to these motion/response patterns of the individual patients, but increases workload and thereby challenges clinical implementation. This paper reviews strategies and workflows for clinical and in silico implemented ART for prostate, bladder, gynecological (gyne) and ano-rectal cancers. MATERIAL AND METHODS: Initial identification of papers was based on searches in PubMed. For each tumor site, the identified papers were screened independently by two researches for selection of studies describing all processes of an ART workflow: treatment monitoring and evaluation, decision and execution of adaptations. Both brachytherapy and external beam studies were eligible for review. RESULTS: The review consisted of 43 clinical studies and 51 in silico studies. For prostate, 1219 patients were treated with offline re-planning, mainly to adapt prostate motion relative to bony anatomy. For gyne 1155 patients were treated with online brachytherapy re-planning while 25 ano-rectal cancer patients were treated with offline re-planning, all to account for tumor regression detected by magnetic resonance imaging (MRI)/computed tomography (CT). For bladder and gyne, 161 and 64 patients, respectively, were treated with library-based online plan selection to account for target volume and shape variations. The studies reported sparing of rectum (prostate and bladder cancer), bladder (ano-rectal cancer) and bowel cavity (gyne and bladder cancer) as compared to non-ART. CONCLUSION: Implementations of ART were dominated by offline re-planning and online brachytherapy re-planning strategies, although recently online plan selection workflows have increased with the availability of cone-beam CT. Advantageous dosimetric and outcome patterns using ART was documented by the studies of this review. Despite this, clinical implementations were scarce due to challenges in target/organ re-contouring and suboptimal patient selection in the ART workflows.


Assuntos
Neoplasias Pélvicas/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Braquiterapia/métodos , Simulação por Computador , Tomografia Computadorizada de Feixe Cônico/métodos , Feminino , Neoplasias dos Genitais Femininos/radioterapia , Humanos , Masculino , Órgãos em Risco/efeitos da radiação , Medicina de Precisão/métodos , Neoplasias da Próstata/radioterapia , Reto/efeitos da radiação , Neoplasias da Bexiga Urinária/radioterapia , Fluxo de Trabalho
7.
Acta Oncol ; 54(9): 1317-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26230629

RESUMO

BACKGROUND: An elevated risk of radiation-induced secondary cancer (SC) has been observed in prostate cancer patients after radiotherapy (RT), rising to as high as one in 70 patients with more than 10 years follow-up. In this study we have estimated SC risks following RT with both previous and contemporary techniques, including proton therapy, using risk models based on different dose-response relationships. MATERIAL AND METHODS: RT plans treating the prostate and seminal vesicles with either conformal radiotherapy (CRT), volumetric modulated arc therapy (VMAT) or intensity-modulated proton therapy (IMPT) were created for 10 patients. The risks of radiation-induced cancer were estimated for the bladder and rectum using dose-response models reflecting varying degrees of cell sterilisation: a linear model, a linear-plateau model and a bell-shaped model also accounting for fractionated RT. RESULTS: The choice of risk models was found to rank the plans quite differently, with the CRT plans having the lowest SC risk using the bell-shaped model, while resulting in the highest risk applying the linear model. Considering all dose-response scenarios, median relative risks of VMAT versus IMPT were 1.1-1.7 for the bladder and 0.9-1.8 for the rectum. Risks of radiation-induced bladder and rectal cancers were lower from VMAT if exposed at 80 years versus IMPT if exposed at 50 years. CONCLUSIONS: The SC risk estimations for the bladder and rectum revealed no clear relative relationship between the contemporary techniques and CRT, with divergent results depending on choice of model. However, the SC risks for these organs when using IMPT were lower or comparable to VMAT. SC risks could be assessed when considering referral of prostate cancer patients to proton therapy, taking also general patient characteristics, such as age, into account.


Assuntos
Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias da Próstata/radioterapia , Neoplasias Retais/etiologia , Neoplasias da Bexiga Urinária/etiologia , Idoso , Idoso de 80 Anos ou mais , Relação Dose-Resposta à Radiação , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Radioterapia/efeitos adversos , Dosagem Radioterapêutica , Neoplasias Retais/epidemiologia , Fatores de Risco , Neoplasias da Bexiga Urinária/epidemiologia
8.
Acta Oncol ; 53(8): 1048-57, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25017376

RESUMO

BACKGROUND: Improvement in radiotherapy during the past decades has made the risk of developing a radiation-induced secondary cancer as a result of dose to normal tissue a highly relevant survivorship issue. Important factors expected to influence secondary cancer risk include dose level and dose heterogeneity, as well as gender and type of tissue irradiated. The elevated radio-sensitivity in children calls for models particularly tailored to paediatric cancer patients. MATERIAL AND METHODS: Treatment plans of six paediatric medulloblastoma patients were analysed with respect to secondary cancer risk following cranio-spinal irradiation (CSI), using either: 1) electrons and photons combined; 2) conformal photons; 3) double-scattering (DS) protons; or 4) intensity-modulated proton therapy (IMPT). The relative organ equivalent dose (OED) concept was applied in three dose-risk scenarios: a linear response model, a plateau response and an organ specific linear-exponential response. Life attributable risk (LAR) was calculated based on the BEIR VII committee's preferred models for estimating age- and site-specific solid cancer incidence. Uncertainties in the model input parameters were evaluated by error propagation using a Monte Carlo sampling procedure. RESULTS: Both DS protons and IMPT achieved a significantly better dose conformity compared to the photon and electron irradiation techniques resulting in a six times lower overall risk of radiation-induced cancer. Secondary cancer risk in the thyroid and lungs contributed most to the overall risk in all compared modalities, while no significant difference was observed for the bones. Variations between DS protons and IMPT were small, as were differences between electrons and photons. CONCLUSION: Regardless of technique, using protons decreases the estimated risk of secondary cancer following paediatric CSI compared to conventional photon and electron techniques. Substantial uncertainties in the LAR estimates support relative risk comparisons by OED.


Assuntos
Neoplasias Cerebelares/radioterapia , Radiação Cranioespinal/efeitos adversos , Elétrons/efeitos adversos , Meduloblastoma/radioterapia , Neoplasias Induzidas por Radiação/etiologia , Segunda Neoplasia Primária/etiologia , Fótons/efeitos adversos , Terapia com Prótons/efeitos adversos , Neoplasias Ósseas/etiologia , Criança , Pré-Escolar , Neoplasias do Colo/etiologia , Relação Dose-Resposta à Radiação , Feminino , Humanos , Neoplasias Pulmonares/etiologia , Masculino , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Medição de Risco , Fatores Sexuais , Neoplasias da Glândula Tireoide/etiologia
9.
Radiother Oncol ; 109(3): 344-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24183863

RESUMO

BACKGROUND AND PURPOSE: Deformation and correlated target motion remain challenges for margin recipes in radiotherapy (RT). This study presents a statistical deformable motion model for multiple targets and applies it to margin evaluations for locally advanced prostate cancer i.e. RT of the prostate (CTV-p), seminal vesicles (CTV-sv) and pelvic lymph nodes (CTV-ln). MATERIAL AND METHODS: The 19 patients included in this study, all had 7-10 repeat CT-scans available that were rigidly aligned with the planning CT-scan using intra-prostatic implanted markers, followed by deformable registrations. The displacement vectors from the deformable registrations were used to create patient-specific statistical motion models. The models were applied in treatment simulations to determine probabilities for adequate target coverage, e.g. by establishing distributions of the accumulated dose to 99% of the target volumes (D99) for various CTV-PTV expansions in the planning-CTs. RESULTS: The method allowed for estimation of the expected accumulated dose and its variance of different DVH parameters for each patient. Simulations of inter-fractional motion resulted in 7, 10, and 18 patients with an average D99 >95% of the prescribed dose for CTV-p expansions of 3mm, 4mm and 5mm, respectively. For CTV-sv and CTV-ln, expansions of 3mm, 5mm and 7 mm resulted in 1, 11 and 15 vs. 8, 18 and 18 patients respectively with an average D99 >95% of the prescription. CONCLUSIONS: Treatment simulations of target motion revealed large individual differences in accumulated dose mainly for CTV-sv, demanding the largest margins whereas those required for CTV-p and CTV-ln were comparable.


Assuntos
Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Masculino , Modelos Estatísticos , Movimento (Física) , Pelve/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Proteção Radiológica , Glândulas Seminais/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
10.
Acta Oncol ; 52(7): 1423-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23964658

RESUMO

UNLABELLED: Daily treatment plan selection from a plan library is a major adaptive radiotherapy strategy to account for individual internal anatomy variations. This strategy depends on the initial input images being representative for the variations observed later in the treatment course. Focusing on locally advanced prostate cancer, our aim was to evaluate if residual motion of the prostate (CTV-p) and the elective targets (CTV-sv, CTV-ln) can be prospectively accounted for with a statistical deformable model based on images acquired in the initial part of treatment. METHODS: Thirteen patients with locally advanced prostate cancer, each with 9-10 repeat CT scans, were included. Displacement vectors fields (DVF) obtained from contour-based deformable registration of delineations in the repeat- and planning CT scans were used to create patient-specific statistical motion models using principal component analysis (PCA). For each patient and CTV, four PCA-models were created: one with all 9-10 DVF as input in addition to models with only four, five or six DVFs as input. Simulations of target shapes from each PCA-model were used to calculate iso-coverage levels, which were converted to contours. The levels were analyzed for sensitivity and precision. RESULTS: A union of the simulated shapes was able to cover at least 97%, 97% and 95% of the volumes of the evaluated CTV shapes for PCA-models using six, five and four DVFs as input, respectively. There was a decrease in sensitivity with higher iso-coverage levels, with a sharper decline for greater target movements. Apart from having the steepest decline in sensitivity, CTV-sv also displayed the greatest influence on the number of geometries used in the PCA-model. CONCLUSIONS: PCA-based simulations of residual motion derived from four to six DVFs as input could account for the majority of the target shapes present during the latter part of the treatment. CTV-sv displayed the greatest range in both sensitivity and precision.


Assuntos
Modelos Estatísticos , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Marcadores Fiduciais , Humanos , Masculino , Movimento , Análise de Componente Principal , Prognóstico , Estudos Prospectivos , Neoplasias da Próstata/patologia
11.
Radiother Oncol ; 107(2): 147-52, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23684586

RESUMO

BACKGROUND AND PURPOSE: In radiotherapy (RT) of prostate cancer the key organs at risk (ORs) - the rectum and the bladder - display considerable motion, which may influence the dose/volume parameters predicting for morbidity. In this study we compare motion-inclusive doses to planned doses for the rectum and bladder and explore their associations with prospectively recorded morbidity. MATERIALS AND METHODS: The study included 38 prostate cancer patients treated with hypo-fractionated image-guided intensity-modulated RT that had an average of nine repeat CT scans acquired during treatment. These scans were registered to the respective treatment planning CT (pCT) followed by a new dose calculation from which motion-inclusive dose distributions were derived. The pCT volumes, the treatment course averaged volumes as well as the planned and motion-inclusive doses were associated with acute and late morbidity (morbidity cut-off: ≥ Grade 2). RESULTS: Acute rectal morbidity (observed in 29% of cases) was significantly associated with both smaller treatment course averaged rectal volumes (population median: 75 vs. 94 cm(3)) and the motion-inclusive volume receiving doses close to the prescription dose (2 Gy-equivalent dose of 76 Gy). CONCLUSION: Variation in rectum and bladder volumes leads to deviations between planned and delivered dose/volume parameters that should be accounted for to improve the ability to predict morbidity following RT.


Assuntos
Neoplasias da Próstata/radioterapia , Reto/efeitos da radiação , Bexiga Urinária/efeitos da radiação , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Movimento (Física) , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
12.
Acta Oncol ; 52(3): 521-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23409771

RESUMO

UNLABELLED: Internal target and organ motion during treatment is a challenge in radiotherapy (RT) of the prostate and the involved elective targets, with residual motion being present also following image-guidance strategies. The aim of this study was to investigate organ motion-induced dose degradations for the prostate, seminal vesicle and the pelvic lymph node when treating these targets with proton therapy, using different image-guidance and delivery strategies. MATERIAL AND METHODS: Four patients were selected from a larger series as they displayed large inter-fractional variation in bladder and rectum volume. Intensity-modulated proton therapy plans were generated using both simultaneous integrated and sequential boost delivery. For each technique, three isotropic margin expansions (in the range of 4-10 mm) were evaluated for the clinical target volume of prostate (CTV-p), seminal vesicles (CTV-sv) and lymph nodes (CTV-ln). Simulation of the dose degradations for all treatment plans were based on dose re-calculations for the 8-9 repeat CTs available for each patient, after applying rigid registrations to reproduce set-up based on either intra-prostatic fiducials or bony anatomy. RESULTS: The simulated dose received by 99% of the target volume (D(99)) and generalized equivalent dose (gEUD) showed substantial inter-patient variations. For 40% of the investigated scenarios, the patient average simulated D(99) for all targets were within 2 GyE from the planned dose. The largest difference between simulated and planned dose was seen for the CTV-sv when using SIB delivery, with an average relative reduction in D(99) of 13% and 15% for the largest margin expansion, when positioned using fiducials and bony anatomy, respectively. CONCLUSIONS: The most severe dose degradations were found for CTV-sv, but they were also evident for CTV-ln. The degradations could not be completely resolved, neither by using the largest margin expansion nor with the choice of set-up. With fiducial set-up CTV-p was robust against the inter-fraction changes.


Assuntos
Fracionamento da Dose de Radiação , Próstata/patologia , Neoplasias da Próstata/radioterapia , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Simulação por Computador , Relação Dose-Resposta à Radiação , Humanos , Masculino , Movimento (Física) , Tamanho do Órgão , Posicionamento do Paciente , Pelve/diagnóstico por imagem , Pelve/patologia , Próstata/efeitos da radiação , Terapia com Prótons/efeitos adversos , Erros de Configuração em Radioterapia/prevenção & controle , Radioterapia de Intensidade Modulada/efeitos adversos , Reto/diagnóstico por imagem , Reto/patologia , Tomografia Computadorizada por Raios X/métodos , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/patologia
13.
Acta Oncol ; 50(6): 926-34, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21767193

RESUMO

BACKGROUND AND PURPOSE: Uncorrelated motion of targets and large deformations of organs at risk represent challenges for image-guidance in simultaneous integrated boost (SIB) radiotherapy (RT) of pelvic tumour sites. This study aims to evaluate the robustness towards geometrical uncertainties in prostate cancer using two image-guided RT (IGRT) set-up strategies for two SIB delivery methods. Secondly, we evaluate the ability of geometrical parameters to predict when the applied margins are insufficient, resulting in target underdosage (TUD). MATERIAL AND METHODS: The study included nine patients with eight to nine repeat computed tomography (CT)-scans evenly distributed throughout their treatment course. The prostate target (CTV-p) and the lymph node target including seminal vesicles (CTV-ln/sv) were delineated in all scans. SIB treatment plans for intensity-modulated RT and volumetric modulated arc therapy were generated on the planning CT and transferred to the repeat CTs for dose re-calculation using registration based on either anatomy or intra-prostatic fiducial markers. Receiving operator characteristic analysis was used to deduce the ability of the parameters to predict TUD. RESULTS: The dosimetric differences between the two positioning strategies were small for all parameters evaluated and significant only for the dose to rectum. Anatomy based registration resulted in inferior target coverage with a larger number of TUDs, mostly seen in the seminal vesicles. For both targets the highest sensitivity and specificity of predicting TUD was seen for the relative volume and the lowest was found for the displacement vector. CONCLUSIONS: Positioning based on fiducials gave the best trade-off between coverage of the targets although resulting in the highest dose to rectum. Target underdosage occurred mostly in the seminal vesicles. For both targets, the best parameter to predict TUD was the relative volume.


Assuntos
Processamento de Imagem Assistida por Computador , Linfonodos/diagnóstico por imagem , Linfonodos/efeitos da radiação , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radioterapia de Intensidade Modulada , Algoritmos , Humanos , Masculino , Neoplasias Pélvicas/diagnóstico por imagem , Neoplasias Pélvicas/radioterapia , Curva ROC , Planejamento da Radioterapia Assistida por Computador , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/radioterapia , Tomografia Computadorizada por Raios X , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/radioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...