Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(4): 4637-4647, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38251952

RESUMO

The interface between the catalyst and the ionomer in the catalyst layer of polymer electrolyte membrane fuel cells (PEMFCs) has been a subject of keen interest, but its effect on durability has not been fully understood due to the complexity of the catalyst layer structure. Herein, we utilize a Pt nanoparticle (NP) array electrode fabricated using a block copolymer template as the platform for a focused investigation of the interfacial change between the Nafion thin film and the Pt NP under a constant potential. A set of analyses for the electrodes treated with various potentials reveals that the Nafion thin film becomes densely packed at the intermediate potentials (0.4 and 0.7 V), indicating an increased ionomer-catalyst interaction due to the positive charges formed at the Pt surface at these potentials. Even for a practical PEMFC single cell, we demonstrate that the potential holding at the intermediate potentials increases ionomer adsorption to the Pt surface and the oxygen transport resistance, negatively impacting its power performance. This work provides fresh insight into the mechanism behind the performance fade in PEMFCs caused by potential-dependent ionomer rearrangement.

2.
Nano Lett ; 21(13): 5500-5507, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-33913722

RESUMO

Sharks, marine creatures that swim fast and have an antifouling ability, possess dermal denticle structures of micrometer-size. Because the riblet geometries on the denticles reduce the shear stress by inducing the slip of fluid parallel to the stream-wise direction, shark skin has the distinguished features of low drag and antifouling. Although much attention has been given to low-drag surfaces inspired from shark skin, it remains an important challenge to accurately mimic denticle structures in the micrometer scale and to finely control their structural features. This paper presents a novel method to create shark skin-mimetic denticle structures for low drag by exploiting a photoreconfigurable azopolymer. The light-designed denticle structure exhibits superior hydrophobicity and an antifouling effect as sharks do. This work suggests that our novel photoreconfiguration technology, mimicking shark skin and systematically manipulating various structural parameters, can be used in a reliable manner for diverse applications requiring low-drag surfaces.


Assuntos
Tubarões , Animais , Biomimética , Interações Hidrofóbicas e Hidrofílicas , Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...