Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscientist ; 29(1): 41-61, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34459315

RESUMO

Identifying and interrogating cell type-specific populations within the heterogeneous milieu of the human brain is paramount to resolving the processes of normal brain homeostasis and the pathogenesis of neurological disorders. While brain cell type-specific markers are well established, most are localized on cellular membranes or within the cytoplasm, with limited literature describing those found in the nucleus. Due to the complex cytoarchitecture of the human brain, immunohistochemical studies require well-defined cell-specific nuclear markers for more precise and efficient quantification of the cellular populations. Furthermore, efficient nuclear markers are required for cell type-specific purification and transcriptomic interrogation of archived human brain tissue through nuclei isolation-based RNA sequencing. To sate the growing demand for robust cell type-specific nuclear markers, we thought it prudent to comprehensively review the current literature to identify and consolidate a novel series of robust cell type-specific nuclear markers that can assist researchers across a range of neuroscientific disciplines. The following review article collates and discusses several key and prospective cell type-specific nuclei markers for each of the major human brain cell types; it then concludes by discussing the potential applications of cell type-specific nuclear workflows and the power of nuclear-based neuroscientific research.


Assuntos
Encéfalo , Núcleo Celular , Humanos , Núcleo Celular/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Perfilação da Expressão Gênica , Transcriptoma
2.
Bioorg Med Chem Lett ; 50: 128336, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34438012

RESUMO

Cytoprotective agents are mainly used to protect the gastrointestinal tract linings and in the treatment of gastric ulcers. These agents are devoid of appreciable cytotoxic or cytostatic effects, and medicinal chemistry efforts to modify them into anticancer agents are rare. A drug repurposing campaign initiated in our laboratory with the primary focus of discovering brain cancer drugs resulted in drug-dye conjugate 1, a combination of the cytoprotective agent troxipide and heptamethine cyanine dye MHI 148. The drug-dye conjugate 1 was evaluated in three different patient-derived adult glioblastoma cell lines, commercially available U87 glioblastoma, and one paediatric glioblastoma cell line. In all cases, the conjugate 1 showed potent cytotoxic activity with nanomolar potency (EC50: 267 nM). Interestingly, troxipide alone does not show any cytotoxic and cytostatic activity in the above cell lines. We also observe a synergistic effect of 1 with temozolomide (TMZ), the standard drug used for glioblastoma treatment, even though the cell lines we used in this study were resistant to TMZ treatment. Herein we disclose the synthesis and in vitro activity of drug-dye conjugate 1 for treatment of difficult-to-treat brain cancers such as glioblastoma.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Carbocianinas/química , Glioblastoma/tratamento farmacológico , Indóis/química , Piperidinas/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Desenho de Fármacos , Reposicionamento de Medicamentos , Quimioterapia Combinada , Humanos , Estrutura Molecular , Temozolomida/administração & dosagem , Temozolomida/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...