Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 2(4): e1501513, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27152343

RESUMO

Mt. Paektu (also known as Changbaishan) is an enigmatic volcano on the border between the Democratic People's Republic of Korea (DPRK) and China. Despite being responsible for one of the largest eruptions in history, comparatively little is known about its magmatic evolution, geochronology, or underlying structure. We present receiver function results from an unprecedented seismic deployment in the DPRK. These are the first estimates of the crustal structure on the DPRK side of the volcano and, indeed, for anywhere beneath the DPRK. The crust 60 km from the volcano has a thickness of 35 km and a bulk V P/V S of 1.76, similar to that of the Sino-Korean craton. The V P/V S ratio increases ~20 km from the volcano, rising to >1.87 directly beneath the volcano. This shows that a large region of the crust has been modified by magmatism associated with the volcanism. Such high values of V P/V S suggest that partial melt is present in the crust beneath Mt. Paektu. This region of melt represents a potential source for magmas erupted in the last few thousand years and may be associated with an episode of volcanic unrest observed between 2002 and 2005.


Assuntos
Erupções Vulcânicas , República Democrática Popular da Coreia , Desastres , História Antiga , Humanos
2.
Sci Adv ; 2(11): e1600913, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28138521

RESUMO

Paektu volcano (Changbaishan) is a rhyolitic caldera that straddles the border between the Democratic People's Republic of Korea and China. Its most recent large eruption was the Millennium Eruption (ME; 23 km3 dense rock equivalent) circa 946 CE, which resulted in the release of copious magmatic volatiles (H2O, CO2, sulfur, and halogens). Accurate quantification of volatile yield and composition is critical in assessing volcanogenic climate impacts but is challenging, particularly for events before the satellite era. We use a geochemical technique to quantify volatile composition and upper bounds to yields for the ME by examining trends in incompatible trace and volatile element concentrations in crystal-hosted melt inclusions. We estimate that the ME could have emitted as much as 45 Tg of S to the atmosphere. This is greater than the quantity of S released by the 1815 eruption of Tambora, which contributed to the "year without a summer." Our maximum gas yield estimates place the ME among the strongest emitters of climate-forcing gases in the Common Era. However, ice cores from Greenland record only a relatively weak sulfate signal attributed to the ME. We suggest that other factors came into play in minimizing the glaciochemical signature. This paradoxical case in which high S emissions do not result in a strong glacial sulfate signal may present a way forward in building more generalized models for interpreting which volcanic eruptions have produced large climate impacts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...