Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16469, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014128

RESUMO

Tectonic plate motions drive the earthquake cycle, as they result in the slow accrual and sudden release of energy along plate boundaries. Steadiness of plate motions over the earthquake cycle is a central tenet of the plate tectonics theory and has long been a main pillar in models of earthquake genesis, or of plate-margins seismic potential inferred from slip-deficit estimates. The advent of geodesy in the geosciences and the availability of multi-year-long series of position measurements permit tracking the motions of tectonic plates from before to after the time of significant seismic events that occur along their margins. Here, we present evidence that large earthquakes are capable of modifying the motions of entire microplates. We use high precision Global Navigation Satellite System (GNSS) position time-series covering the periods 2001-2004 and 2014-2017 to demonstrate that, contrary to the tenet above, the South China microplate motion changed after the 2008 M W 7.9 Great Wenchuan earthquake. The GNSS data and associated uncertainties indicate a plate motion slowdown of up to 20% that is beyond the possible impact of data noise and is thus tectonically meaningful. We use quantitative models of torque balance to show that generating this kinematic change requires a force upon the South China microplate compatible with that imparted by the Great Wenchuan earthquake of 2008. The existence of a kinematic signal linked to the earthquake cycle that impacts an entire microplate might offer an additional, novel perspective to assessing the hazards of earthquake-prone tectonic regions.

3.
Sci Rep ; 13(1): 18623, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903833

RESUMO

Over million years, convergence between the Nazca and South America tectonic plates results in Andean orogeny. Over decades/centuries, it fuels the earthquake cycle of the Andean megathrust. It is well recognised that, over the geologically-long term of million years, Andean orogeny feeds back onto plate convergence rates, generating temporal changes documented throughout the Neogene. In contrast, no feedback mechanism operated over the geologically-short term by the earthquake cycle is currently contemplated. In fact, it is commonly assumed that the rates of contemporary convergence, which are accurately measured via geodesy, remain steady during the megathrust earthquake cycle. Here we investigate whether the contemporary Nazca/South America plate motion varies over year-/decade-long periods in response to megathrust stress variations associated with the earthquake cycle. We focus on the decade preceding the three largest and most recent [Formula: see text] earthquakes (2010 [Formula: see text] Maule, 2014 [Formula: see text] Iquique, 2015 [Formula: see text] Illapel), and find slowdowns of both Nazca and South America whole-plate motions that exceed the impact of data uncertainty or noise. We show that the torque variations required upon Nazca and South America to generate the slowdowns are consistent with that arising from the buildup of interseismic stress preceding the earthquakes.

4.
Nat Commun ; 13(1): 1339, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292661

RESUMO

The Andean cordillera was constructed during compressive tectonic events, whose causes and controls remain unclear. Exploring a possible link to plate convergence has been impeded by the coarse temporal resolution of existing plate kinematic models. Here we show that the Neogene evolution of the Andean margin is primarily related to changes in convergence as observed in new high-resolution plate reconstructions. Building on a compilation of plate finite rotations spanning the last 30 million years and using noise-mitigation techniques, we predict several short-term convergence changes that were unresolved in previous models. These changes are related to main tectono-magmatic events and require forces that are compatible with a range of geodynamic processes. These results allow to revise models of ongoing subduction orogeny at its type locality, emphasizing the role of upper plate deformation in the balance between kinematic energy associated with plate motion and gravitational potential energy stored in orogenic crustal roots.


Assuntos
Fenômenos Biomecânicos , Movimento (Física)
5.
Nat Commun ; 3: 1048, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22948830

RESUMO

Understanding lithospheric plate motions is of paramount importance to geodynamicists. Much effort is going into kinematic reconstructions featuring progressively finer temporal resolution. However, the challenge of precisely identifying ocean-floor magnetic lineations, and uncertainties in geomagnetic reversal timescales result in substantial finite-rotations noise. Unless some type of temporal smoothing is applied, the scenario arising at the native temporal resolution is puzzling, as plate motions vary erratically and significantly over short periods (<1 Myr). This undermines our ability to make geodynamic inferences, as the rates at which forces need to be built upon plates to explain these kinematics far exceed the most optimistic estimates. Here we show that the largest kinematic changes reconstructed across the Atlantic, Indian and South Pacific ridges arise from data noise. We overcome this limitation using a trans-dimensional hierarchical Bayesian framework. We find that plate-motion changes occur on timescales no shorter than a few million years, yielding simpler kinematic patterns and more plausible dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...