Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 290(13): 3311-3335, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35668694

RESUMO

The ever-growing world population, increasingly frequent extreme weather events and conditions, emergence of novel devastating crop pathogens and the social strive for quality food products represent a huge challenge for current and future agricultural production systems. To address these challenges and find realistic solutions, it is becoming more important by the day to understand the complex interactions between plants and the environment, mainly the associated organisms, but in particular pathogens. In the past several years, research in the fields of plant pathology and plant-microbe interactions has enabled tremendous progress in understanding how certain receptor-based plant innate immune systems function to successfully prevent infections and diseases. In this review, we highlight and discuss some of these new ground-breaking discoveries and point out strategies of how pathogens counteract the function of important core convergence hubs of the plant immune system. For practical reasons, we specifically place emphasis on potential applications that can be detracted by such discoveries and what challenges the future of agriculture has to face, but also how these challenges could be tackled.


Assuntos
Proteínas NLR , Proteínas de Plantas , Plantas , Receptores de Reconhecimento de Padrão , Plantas/imunologia , Plantas/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais , Proteínas NLR/metabolismo , Proteínas de Plantas/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Agricultura
2.
Front Plant Sci ; 12: 637352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790927

RESUMO

Plant responses to flooding, submergence and waterlogging are important for adaptation to climate change environments. Therefore, the characterization of the molecular mechanisms activated under hypoxic and anoxic conditions might lead to low oxygen resilient crops. Although in mammalian systems prolyl 4 hydroxylases (P4Hs) are involved in the oxygen sensing pathway, their role in plants under low oxygen has not been extensively investigated. In this report, an Arabidopsis AtP4H3 T-DNA knock out mutant line showed higher sensitivity to anoxic treatment possibly due to lower induction of the fermentation pathway genes, ADH and PDC1, and of sucrose synthases, SUS1 and SUS4. This sensitivity to anoxia was accompanied by lower protein levels of AGPs-bound epitopes such as LM14 in the mutant line and induction of extensins-bound epitopes, while the expression levels of the majority of the AGPs genes were stable throughout a low oxygen time course. The lower AGPs content might be related to altered frequency of proline hydroxylation occurrence in the p4h3 line. These results indicate active involvement of proline hydroxylation, a post-translational modification, to low oxygen response in Arabidopsis.

3.
G3 (Bethesda) ; 10(5): 1753-1763, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32209596

RESUMO

The molecular interactions between tomato and Cladosporium fulvum have been an important model for molecular plant pathology. Complex genetic loci on tomato chromosomes 1 and 6 harbor genes for resistance to Cladosporium fulvum, encoding receptor like-proteins that perceive distinct Cladosporium fulvum effectors and trigger plant defenses. Here, we report classical mapping strategies for loci in tomato accessions that respond to Cladosporium fulvum effector Ecp5, which is very sequence-monomorphic. We screened 139 wild tomato accessions for an Ecp5-induced hypersensitive response, and in five accessions, the Ecp5-induced hypersensitive response segregated as a monogenic trait, mapping to distinct loci in the tomato genome. We identified at least three loci on chromosomes 1, 7 and 12 that harbor distinct Cf-Ecp5 genes in four different accessions. Our mapping showed that the Cf-Ecp5 in Solanum pimpinellifolium G1.1161 is located at the Milky Way locus. The Cf-Ecp5 in Solanum pimpinellifolium LA0722 was mapped to the bottom arm of chromosome 7, while the Cf-Ecp5 genes in Solanum lycopersicum Ontario 7522 and Solanum pimpinellifolium LA2852 were mapped to the same locus on the top arm of chromosome 12. Bi-parental crosses between accessions carrying distinct Cf-Ecp5 genes revealed putative genetically unlinked suppressors of the Ecp5-induced hypersensitive response. Our mapping also showed that Cf-11 is located on chromosome 11, close to the Cf-3 locus. The Ecp5-induced hypersensitive response is widely distributed within tomato species and is variable in strength. This novel example of convergent evolution could be used for choosing different functional Cf-Ecp5 genes according to individual plant breeding needs.


Assuntos
Solanum lycopersicum , Ascomicetos , Cladosporium/genética , Proteínas Fúngicas , Solanum lycopersicum/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Proteínas de Plantas/genética
4.
Genetics ; 204(1): 337-53, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27412712

RESUMO

We identified loci responsible for natural variation in Arabidopsis thaliana (Arabidopsis) responses to a bacterial pathogen virulence factor, HopAM1. HopAM1 is a type III effector protein secreted by the virulent Pseudomonas syringae strain Pto DC3000. Delivery of HopAM1 from disarmed Pseudomonas strains leads to local cell death, meristem chlorosis, or both, with varying intensities in different Arabidopsis accessions. These phenotypes are not associated with differences in bacterial growth restriction. We treated the two phenotypes as quantitative traits to identify host loci controlling responses to HopAM1. Genome-wide association (GWA) of 64 Arabidopsis accessions identified independent variants highly correlated with response to each phenotype. Quantitative trait locus (QTL) mapping in a recombinant inbred population between Bur-0 and Col-0 accessions revealed genetic linkage to regions distinct from the top GWA hits. Two major QTL associated with HopAM1-induced cell death were also associated with HopAM1-induced chlorosis. HopAM1-induced changes in Arabidopsis gene expression showed that rapid HopAM1-dependent cell death in Bur-0 is correlated with effector-triggered immune responses. Studies of the effect of mutations in known plant immune system genes showed, surprisingly, that both cell death and chlorosis phenotypes are enhanced by loss of EDS1, a regulatory hub in the plant immune-signaling network. Our results reveal complex genetic architecture for response to this particular type III virulence effector, in contrast to the typical monogenic control of cell death and disease resistance triggered by most type III effectors.


Assuntos
Arabidopsis/genética , Arabidopsis/imunologia , Locos de Características Quantitativas/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Genes de Plantas , Estudo de Associação Genômica Ampla , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Pseudomonas syringae/imunologia , Fatores de Virulência/metabolismo
5.
Development ; 143(6): 978-82, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26893344

RESUMO

Controlled cell division is central to the growth and development of all multicellular organisms. Within the proliferating zone of the Arabidopsis root, regular symmetric divisions give rise to patterns of parallel files of cells, the genetic basis of which remains unclear. We found that genotypes impaired in the TONNEAU1a (TON1a) gene display misoriented symmetric divisions in the epidermis and have no division defects in the underlying cortical tissue. The TON1a gene encodes a microtubule-associated protein. We show that in the ton1a mutant, epidermal and cortical cells do not form narrow, ring-like preprophase bands (PPBs), which are plant-specific, cytoskeletal structures that predict the position of the division plane before mitosis. The results indicate that in the cortex but not in the epidermis, division plane positioning and patterning can proceed correctly in the absence of both a functional TON1a and PPB formation. Differences between tissues in how they respond to the signals that guide symmetric division orientation during patterning might provide the basis for organised organ growth in the absence of cell movements.


Assuntos
Arabidopsis/citologia , Divisão Celular , Epiderme Vegetal/citologia , Raízes de Plantas/citologia , Alelos , Proteínas de Arabidopsis/genética , Meristema/citologia , Microtúbulos/metabolismo , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...